1
|
Hibshman GN, Bravo JPK, Hooper MM, Dangerfield TL, Zhang H, Finkelstein IJ, Johnson KA, Taylor DW. Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9. Nat Commun 2024; 15:3663. [PMID: 38688943 PMCID: PMC11061278 DOI: 10.1038/s41467-024-47830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
CRISPR-Cas9 is a powerful tool for genome editing, but the strict requirement for an NGG protospacer-adjacent motif (PAM) sequence immediately next to the DNA target limits the number of editable genes. Recently developed Cas9 variants have been engineered with relaxed PAM requirements, including SpG-Cas9 (SpG) and the nearly PAM-less SpRY-Cas9 (SpRY). However, the molecular mechanisms of how SpRY recognizes all potential PAM sequences remains unclear. Here, we combine structural and biochemical approaches to determine how SpRY interrogates DNA and recognizes target sites. Divergent PAM sequences can be accommodated through conformational flexibility within the PAM-interacting region, which facilitates tight binding to off-target DNA sequences. Nuclease activation occurs ~1000-fold slower than for Streptococcus pyogenes Cas9, enabling us to directly visualize multiple on-pathway intermediate states. Experiments with SpG position it as an intermediate enzyme between Cas9 and SpRY. Our findings shed light on the molecular mechanisms of PAMless genome editing.
Collapse
Affiliation(s)
- Grace N Hibshman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, Austin, TX, 78712, USA
| | - Jack P K Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| | - Matthew M Hooper
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, Austin, TX, 78712, USA
| | - Tyler L Dangerfield
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hongshan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Kenneth A Johnson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, Austin, TX, 78712, USA
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
- Interdisciplinary Life Sciences Graduate Programs, Austin, TX, 78712, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA.
- LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Johnson KA. You get what you screen for: Standards for experimental design and data fitting in drug discovery. Methods Enzymol 2023; 690:131-157. [PMID: 37858528 DOI: 10.1016/bs.mie.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A common mantra in drug discovery is that "You get what you screen for." This is not a promise that you will always get an effective drug candidate, but rather a warning that inaccuracies in your protocol for screening will more likely produce a compound that fails to be an effective candidate because it matches the properties of your screen, not the desired features of an ideal lead compound. It is with this in mind that we examine the current protocols for evaluating drug candidates and highlight some deficiencies while pointing the way to better methods. Many of the errors in data fitting can be rectified by abandoning the traditional equation-based data fitting methods and adopting the more rigorous mechanism-based fitting afforded by computer simulation based on numerical integration of rate equations. Using these methods bypasses the errors in judgement in choosing the appropriate equation for data fitting and the approximations required to derive those equations. In this chapter we outline the limitations and systematic errors in conventional methods of data fitting and illustrate the advantages of computer simulation and introduce the methods of analysis.
Collapse
Affiliation(s)
- Kenneth A Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
3
|
Johnson KA. History of advances in enzyme kinetic methods: From minutes to milliseconds. Enzymes 2023; 54:107-134. [PMID: 37945168 DOI: 10.1016/bs.enz.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The last review on transient-state kinetic methods in The Enzymes was published three decades ago (Johnson, K.A., 1992. The Enzymes, XX, 1-61). In that review the foundations were laid out for the logic behind the design and interpretation of experiments. In the intervening years the instrumentation has improved mainly in providing better sample economy and shorter dead times. More significantly, in 1992 we were just introducing methods for fitting data based on numerical integration of rate equations, but the software was slow and difficult to use. Today, advances in numerical integration methods for data fitting have led to fast and dynamic software, making it easy to fit data without simplifying approximations. This approach overcomes multiple disadvantages of traditional data fitting based on equations derived by analytical integration of rate equations, requiring simplifying approximations. Mechanism-based fitting using computer simulation resolves mechanisms by accounting for the concentration dependence of the rates and amplitudes of the reaction to find a set of intrinsic rate constants that reproduce the experimental data, including details about how the experiment was performed in modeling the data. Rather than discuss how to design and interpret rapid-quench and stopped-flow experiments individually, we now focus on how to fit them simultaneously so that the quench-flow data anchor the interpretation of fluorescence signals. Computer simulation streamlines the fitting of multiple experiments globally to yield a single unifying model to account for all available data.
Collapse
Affiliation(s)
- Kenneth A Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
4
|
Konttinen O, Carmody J, Kurnik M, Johnson KA, Reich N. High fidelity DNA strand-separation is the major specificity determinant in DNA methyltransferase CcrM's catalytic mechanism. Nucleic Acids Res 2023; 51:6883-6898. [PMID: 37326016 PMCID: PMC10359602 DOI: 10.1093/nar/gkad443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/29/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
Strand-separation is emerging as a novel DNA recognition mechanism but the underlying mechanisms and quantitative contribution of strand-separation to fidelity remain obscure. The bacterial DNA adenine methyltransferase, CcrM, recognizes 5'GANTC'3 sequences through a DNA strand-separation mechanism with unusually high selectivity. To explore this novel recognition mechanism, we incorporated Pyrrolo-dC into cognate and noncognate DNA to monitor the kinetics of strand-separation and used tryptophan fluorescence to follow protein conformational changes. Both signals are biphasic and global fitting showed that the faster phase of DNA strand-separation was coincident with the protein conformational transition. Non-cognate sequences did not display strand-separation and methylation was reduced > 300-fold, providing evidence that strand-separation is a major determinant of selectivity. Analysis of an R350A mutant showed that the enzyme conformational step can occur without strand-separation, so the two events are uncoupled. A stabilizing role for the methyl-donor (SAM) is proposed; the cofactor interacts with a critical loop which is inserted between the DNA strands, thereby stabilizing the strand-separated conformation. The results presented here are broadly applicable to the study of other N6-adenine methyltransferases that contain the structural features implicated in strand-separation, which are found widely dispersed across many bacterial phyla, including human and animal pathogens, and some Eukaryotes.
Collapse
Affiliation(s)
- Olivia Konttinen
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jason Carmody
- Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Martin Kurnik
- Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Kenneth A Johnson
- Life Sciences Interdisciplinary Graduate Program, Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Norbert Reich
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
- Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
5
|
Dangerfield TL, Johnson KA. Design and interpretation of experiments to establish enzyme pathway and define the role of conformational changes in enzyme specificity. Methods Enzymol 2023; 685:461-492. [PMID: 37245912 DOI: 10.1016/bs.mie.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We describe the experimental methods and analysis to define the role of enzyme conformational changes in specificity based on published studies using DNA polymerases as an ideal model system. Rather than give details of how to perform transient-state and single-turnover kinetic experiments, we focus on the rationale of the experimental design and interpretation. We show how initial experiments to measure kcat and kcat/Km can accurately quantify specificity but do not define its underlying mechanistic basis. We describe methods to fluorescently label enzymes to monitor conformational changes and to correlate fluorescence signals with rapid-chemical-quench flow assays to define the steps in the pathway. Measurements of the rate of product release and of the kinetics of the reverse reaction complete the kinetic and thermodynamic description of the full reaction pathway. This analysis showed that the substrate-induced change in enzyme structure from an open to a closed state was much faster than rate-limiting chemical bond formation. However, because the reverse of the conformational change was much slower than chemistry, specificity is governed solely by the product of the binding constant for the initial weak substrate binding and the rate constant for the conformational change (kcat/Km=K1k2) so that the specificity constant does not include kcat. The enzyme conformational change leads to a closed complex in which the substrate is bound tightly and is committed to the forward reaction. In contrast, an incorrect substrate is bound weakly, and the rate of chemistry is slow, so the mismatch is released from the enzyme rapidly. Thus, the substrate-induced-fit is the major determinant of specificity. The methods outlined here should be applicable to other enzyme systems.
Collapse
Affiliation(s)
- Tyler L Dangerfield
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Kenneth A Johnson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
6
|
Dangerfield TL, Paik I, Bhadra S, Johnson KA, Ellington A. Kinetics of elementary steps in loop-mediated isothermal amplification (LAMP) show that strand invasion during initiation is rate-limiting. Nucleic Acids Res 2023; 51:488-499. [PMID: 36583345 PMCID: PMC9841402 DOI: 10.1093/nar/gkac1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Loop-mediated isothermal amplification (LAMP) has proven to be easier to implement than PCR for point-of-care diagnostic tests. However, the underlying mechanism of LAMP is complicated and the kinetics of the major steps in LAMP have not been fully elucidated, which prevents rational improvements in assay development. Here we present our work to characterize the kinetics of the elementary steps in LAMP and show that: (i) strand invasion / initiation is the rate-limiting step in the LAMP reaction; (ii) the loop primer plays an important role in accelerating the rate of initiation and does not function solely during the exponential amplification phase and (iii) strand displacement synthesis by Bst-LF polymerase is relatively fast (125 nt/s) and processive on both linear and hairpin templates, although with some interruptions on high GC content templates. Building on these data, we were able to develop a kinetic model that relates the individual kinetic experiments to the bulk LAMP reaction. The assays developed here provide important insights into the mechanism of LAMP, and the overall model should be crucial in engineering more sensitive and faster LAMP reactions. The kinetic methods we employ should likely prove useful with other isothermal DNA amplification methods.
Collapse
Affiliation(s)
- Tyler L Dangerfield
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Inyup Paik
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Kenneth A Johnson
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew D Ellington
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
7
|
Dangerfield T, Johnson KA. Substrate Specificity and Kinetics of RNA Hydrolysis by SARS-CoV-2 NSP10/14 Exonuclease. ACS BIO & MED CHEM AU 2022; 2:600-606. [PMID: 36570070 PMCID: PMC9718090 DOI: 10.1021/acsbiomedchemau.2c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus that causes COVID-19, continues to evolve resistance to vaccines and existing antiviral therapies at an alarming rate, increasing the need for new direct-acting antiviral drugs. Despite significant advances in our fundamental understanding of the kinetics and mechanism of viral RNA replication, there are still open questions regarding how the proofreading exonuclease (NSP10/NSP14 complex) contributes to replication fidelity and resistance to nucleoside analogs. Through single turnover kinetic analysis, we show that the preferred substrate for the exonuclease is double-stranded RNA without any mismatches. Double-stranded RNA containing a 3'-terminal remdesivir was hydrolyzed at a rate similar to a correctly base-paired cognate nucleotide. Surprisingly, single-stranded RNA or duplex RNA containing a 3'-terminal mismatch was hydrolyzed at rates 125- and 45-fold slower, respectively, compared to the correctly base-paired double-stranded RNA. These results define the substrate specificity and rate of removal of remdesivir for the exonuclease and outline rigorous kinetic assays that could help in finding next-generation exonuclease inhibitors or nucleoside analogs that are able to evade excision. These results also raise important questions about the role of the polymerase/exonuclease complex in proofreading during viral replication. Addressing these questions through rigorous kinetic analysis will facilitate the search for desperately needed antiviral drugs to combat COVID-19.
Collapse
Affiliation(s)
- Tyler
L. Dangerfield
- Institute for Cellular and
Molecular Biology, Department of Molecular Biosciences, University of Texas, 2500 Speedway, Austin, Texas 78712, United States
| | - Kenneth A. Johnson
- Institute for Cellular and
Molecular Biology, Department of Molecular Biosciences, University of Texas, 2500 Speedway, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Kinetics of DNA strand transfer between polymerase and proofreading exonuclease active sites regulates error correction during high-fidelity replication. J Biol Chem 2022; 299:102744. [PMID: 36436560 PMCID: PMC9800556 DOI: 10.1016/j.jbc.2022.102744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
We show that T7 DNA polymerase (pol) and exonuclease (exo) domains contribute to selective error correction during DNA replication by regulating bidirectional strand transfer between the two active sites. To explore the kinetic basis for selective removal of mismatches, we used a fluorescent cytosine analog (1,3-diaza-2-oxophenoxazine) to monitor the kinetics of DNA transfer between the exo and pol sites. We globally fit stopped-flow fluorescence and base excision kinetic data and compared results obtained with ssDNA versus duplex DNA to resolve how DNA transfer governs exo specificity. We performed parallel studies using hydrolysis-resistant phosphorothioate oligonucleotides to monitor DNA transfer to the exo site without hydrolysis. ssDNA binds to the exo site at the diffusion limit (109 M-1 s-1, Kd = 40 nM) followed by fast hydrolysis of the 3'-terminal nucleotide (>5000 s-1). Analysis using duplex DNA with a 3'-terminal mismatch or a buried mismatch exposed a unique intermediate state between pol and exo active sites and revealed that transfer via the intermediate to the exo site is stimulated by free nucleoside triphosphates. Transfer from the exo site back to the pol site after cleavage is fast and efficient. We propose a model to explain why buried mismatches are removed faster than single 3'-terminal mismatches and thereby provide an additional opportunity for error correction. Our data provide the first comprehensive model to explain how DNA transfer from pol to exo active sites and back again after base excision allow efficient selective mismatch removal during DNA replication to improve fidelity by more than 1000-fold.
Collapse
|
9
|
Kumari A, Yadav A, Lahiri I. Transient State Kinetics of Plasmodium falciparum Apicoplast DNA Polymerase Suggests the Involvement of Accessory Factors for Efficient and Accurate DNA Synthesis. Biochemistry 2022; 61:2319-2333. [PMID: 36251801 DOI: 10.1021/acs.biochem.2c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmodium, the causative agent of malaria, belongs to the phylum Apicomplexa. Most apicomplexans, including Plasmodium, contain an essential nonphotosynthetic plastid called the apicoplast that harbors its own genome that is replicated by a dedicated organellar replisome. This replisome employs a single DNA polymerase (apPol), which is expected to perform both replicative and translesion synthesis. Unlike other replicative polymerases, no processivity factor for apPol has been identified. While preliminary structural and biochemical studies have provided an overall characterization of apPol, the kinetic mechanism of apPol's activity remains unknown. We have used transient state methods to determine the kinetics of replicative and translesion synthesis by apPol and show that apPol has low processivity and efficiency while copying undamaged DNA. Moreover, while apPol can bypass oxidatively damaged lesions, the bypass is error-prone. Taken together, our results raise the following question─how does a polymerase with low processivity, efficiency, and fidelity (for translesion synthesis) faithfully replicate the apicoplast organellar DNA within the hostile environment of the human host? We hypothesize that interactions with putative components of the apicoplast replisome and/or an as-yet-undiscovered processivity factor transform apPol into an efficient and accurate enzyme.
Collapse
Affiliation(s)
- Anamika Kumari
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Anjali Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Indrajit Lahiri
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India.,Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
10
|
Karamitros CS, Murray K, Winemiller B, Lamb C, Stone EM, D'Arcy S, Johnson KA, Georgiou G. Leveraging intrinsic flexibility to engineer enhanced enzyme catalytic activity. Proc Natl Acad Sci U S A 2022; 119:e2118979119. [PMID: 35658075 PMCID: PMC9191678 DOI: 10.1073/pnas.2118979119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Dynamic motions of enzymes occurring on a broad range of timescales play a pivotal role in all steps of the reaction pathway, including substrate binding, catalysis, and product release. However, it is unknown whether structural information related to conformational flexibility can be exploited for the directed evolution of enzymes with higher catalytic activity. Here, we show that mutagenesis of residues exclusively located at flexible regions distal to the active site of Homo sapiens kynureninase (HsKYNase) resulted in the isolation of a variant (BF-HsKYNase) in which the rate of the chemical step toward kynurenine was increased by 45-fold. Mechanistic pre–steady-state kinetic analysis of the wild type and the evolved enzyme shed light on the underlying effects of distal mutations (>10 Å from the active site) on the rate-limiting step of the catalytic cycle. Hydrogen-deuterium exchange coupled to mass spectrometry and molecular dynamics simulations revealed that the amino acid substitutions in BF-HsKYNase allosterically affect the flexibility of the pyridoxal-5′-phosphate (PLP) binding pocket, thereby impacting the rate of chemistry, presumably by altering the conformational ensemble and sampling states more favorable to the catalyzed reaction.
Collapse
Affiliation(s)
| | - Kyle Murray
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080
| | - Brent Winemiller
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Candice Lamb
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Everett M. Stone
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX 78712
- LiveSTRONG Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78712
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080
| | - Kenneth A. Johnson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX 78712
- LiveSTRONG Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78712
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
11
|
Dangerfield TL, Kirmizialtin S, Johnson KA. Substrate specificity and proposed structure of the proofreading complex of T7 DNA polymerase. J Biol Chem 2022; 298:101627. [PMID: 35074426 PMCID: PMC8867116 DOI: 10.1016/j.jbc.2022.101627] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
Faithful replication of genomic DNA by high-fidelity DNA polymerases is crucial for the survival of most living organisms. While high-fidelity DNA polymerases favor canonical base pairs over mismatches by a factor of ∼1 × 105, fidelity is further enhanced several orders of magnitude by a 3′–5′ proofreading exonuclease that selectively removes mispaired bases in the primer strand. Despite the importance of proofreading to maintaining genome stability, it remains much less studied than the fidelity mechanisms employed at the polymerase active site. Here we characterize the substrate specificity for the proofreading exonuclease of a high-fidelity DNA polymerase by investigating the proofreading kinetics on various DNA substrates. The contribution of the exonuclease to net fidelity is a function of the kinetic partitioning between extension and excision. We show that while proofreading of a terminal mismatch is efficient, proofreading a mismatch buried by one or two correct bases is even more efficient. Because the polymerase stalls after incorporation of a mismatch and after incorporation of one or two correct bases on top of a mismatch, the net contribution of the exonuclease is a function of multiple opportunities to correct mistakes. We also characterize the exonuclease stereospecificity using phosphorothioate-modified DNA, provide a homology model for the DNA primer strand in the exonuclease active site, and propose a dynamic structural model for the transfer of DNA from the polymerase to the exonuclease active site based on MD simulations.
Collapse
Affiliation(s)
- Tyler L Dangerfield
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Kenneth A Johnson
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA.
| |
Collapse
|
12
|
Dangerfield TL, Kirmizialtin S, Johnson KA. Conformational dynamics during misincorporation and mismatch extension defined using a DNA polymerase with a fluorescent artificial amino acid. J Biol Chem 2021; 298:101451. [PMID: 34838820 PMCID: PMC8715121 DOI: 10.1016/j.jbc.2021.101451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022] Open
Abstract
High-fidelity DNA polymerases select the correct nucleotide over the structurally similar incorrect nucleotides with extremely high specificity while maintaining fast rates of incorporation. Previous analysis revealed the conformational dynamics and complete kinetic pathway governing correct nucleotide incorporation using a high-fidelity DNA polymerase variant containing a fluorescent unnatural amino acid. Here we extend this analysis to investigate the kinetics of nucleotide misincorporation and mismatch extension. We report the specificity constants for all possible misincorporations and characterize the conformational dynamics of the enzyme during misincorporation and mismatch extension. We present free energy profiles based on the kinetic measurements and discuss the effect of different steps on specificity. During mismatch incorporation and subsequent extension with the correct nucleotide, the rates of the conformational change and chemistry are both greatly reduced. The nucleotide dissociation rate, however, increases to exceed the rate of chemistry. To investigate the structural basis for discrimination against mismatched nucleotides, we performed all atom molecular dynamics simulations on complexes with either the correct or mismatched nucleotide bound at the polymerase active site. The simulations suggest that the closed form of the enzyme with a mismatch bound is greatly destabilized due to weaker interactions with active site residues, nonideal base pairing, and a large increase in the distance from the 3'-OH group of the primer strand to the α-phosphate of the incoming nucleotide, explaining the reduced rates of misincorporation. The observed kinetic and structural mechanisms governing nucleotide misincorporation reveal the general principles likely applicable to other high-fidelity DNA polymerases.
Collapse
Affiliation(s)
- Tyler L Dangerfield
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA
| | - Serdal Kirmizialtin
- Chemistry Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kenneth A Johnson
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA.
| |
Collapse
|
13
|
Fagan SP, Mukherjee P, Jaremko WJ, Nelson-Rigg R, Wilson RC, Dangerfield TL, Johnson KA, Lahiri I, Pata JD. Pyrophosphate release acts as a kinetic checkpoint during high-fidelity DNA replication by the Staphylococcus aureus replicative polymerase PolC. Nucleic Acids Res 2021; 49:8324-8338. [PMID: 34302475 PMCID: PMC8373059 DOI: 10.1093/nar/gkab613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Bacterial replication is a fast and accurate process, with the bulk of genome duplication being catalyzed by the α subunit of DNA polymerase III within the bacterial replisome. Structural and biochemical studies have elucidated the overall properties of these polymerases, including how they interact with other components of the replisome, but have only begun to define the enzymatic mechanism of nucleotide incorporation. Using transient-state methods, we have determined the kinetic mechanism of accurate replication by PolC, the replicative polymerase from the Gram-positive pathogen Staphylococcus aureus. Remarkably, PolC can recognize the presence of the next correct nucleotide prior to completing the addition of the current nucleotide. By modulating the rate of pyrophosphate byproduct release, PolC can tune the speed of DNA synthesis in response to the concentration of the next incoming nucleotide. The kinetic mechanism described here would allow PolC to perform high fidelity replication in response to diverse cellular environments.
Collapse
Affiliation(s)
- Sean P Fagan
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Purba Mukherjee
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - William J Jaremko
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Rachel Nelson-Rigg
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Ryan C Wilson
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Tyler L Dangerfield
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kenneth A Johnson
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Indrajit Lahiri
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA.,Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Janice D Pata
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
14
|
Abstract
The protein HIV Reverse Transcriptase (HIV RT) synthesizes a DNA strand according to a template. During the synthesis, the polymerase slides on the double stranded DNA to allow the entry of a new nucleotide to the active site. We use Molecular Dynamics simulations to estimate the free energy profile and the time scale of the DNA-protein's relative displacement in the complex's closed state. We illustrate that the presence of the catalytic magnesium slows down the process. Upon removing the catalytic magnesium ion, the process is rapid and significantly faster than reopening the active site in preparation for the new substrate. We speculate that magnesium regulates DNA translocation. The magnesium locks the DNA into a specific orientation during the chemical addition of the nucleotide. The release of Mg2+ eases DNA sliding and the acceptance of a new substrate.
Collapse
Affiliation(s)
- Hao Wang
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ron Elber
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States.,Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Abstract
Nucleotide analogs are the cornerstone of direct acting antivirals used to control infection by RNA viruses. Here we review what is known about existing nucleotide/nucleoside analogs and the kinetics and mechanisms of RNA and DNA replication, with emphasis on the SARS-CoV-2 RNA dependent RNA polymerase (RdRp) in comparison to HIV reverse transcriptase and Hepatitis C RdRp. We demonstrate how accurate kinetic analysis reveals surprising results to explain the effectiveness of antiviral nucleoside analogs providing guidelines for the design of new inhibitors.
Collapse
|