1
|
Grizel AV, Gorsheneva NA, Stevenson JB, Pflaum J, Wilfling F, Rubel AA, Chernoff YO. Osmotic stress induces formation of both liquid condensates and amyloids by a yeast prion domain. J Biol Chem 2024; 300:107766. [PMID: 39276934 PMCID: PMC11736011 DOI: 10.1016/j.jbc.2024.107766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Liquid protein condensates produced by phase separation are involved in the spatiotemporal control of cellular functions, while solid fibrous aggregates (amyloids) are associated with diseases and/or manifest as infectious or heritable elements (prions). Relationships between these assemblies are poorly understood. The Saccharomyces cerevisiae release factor Sup35 can produce both fluid liquid-like condensates (e.g., at acidic pH) and amyloids (typically cross-seeded by other prions). We observed acidification-independent formation of Sup35-based liquid condensates in response to hyperosmotic shock in the absence of other prions, both at increased and physiological expression levels. The Sup35 prion domain, Sup35N, is both necessary and sufficient for condensate formation, while the middle domain, Sup35M antagonizes this process. Formation of liquid condensates in response to osmotic stress is conserved within yeast evolution. Notably, condensates of Sup35N/NM protein originated from the distantly related yeast Ogataea methanolica can directly convert to amyloids in osmotically stressed S. cerevisiae cells, providing a unique opportunity for real-time monitoring of condensate-to-fibril transition in vivo by fluorescence microscopy. Thus, cellular fate of stress-induced condensates depends on protein properties and/or intracellular environment.
Collapse
Affiliation(s)
- Anastasia V Grizel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Natalia A Gorsheneva
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russia
| | - Jonathan B Stevenson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jeremy Pflaum
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russia
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
2
|
Carter Z, Creamer D, Kouvidi A, Grant CM. Sequestrase chaperones protect against oxidative stress-induced protein aggregation and [PSI+] prion formation. PLoS Genet 2024; 20:e1011194. [PMID: 38422160 DOI: 10.1371/journal.pgen.1011194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
Misfolded proteins are usually refolded to their functional conformations or degraded by quality control mechanisms. When misfolded proteins evade quality control, they can be sequestered to specific sites within cells to prevent the potential dysfunction and toxicity that arises from protein aggregation. Btn2 and Hsp42 are compartment-specific sequestrases that play key roles in the assembly of these deposition sites. Their exact intracellular functions and substrates are not well defined, particularly since heat stress sensitivity is not observed in deletion mutants. We show here that Btn2 and Hsp42 are required for tolerance to oxidative stress conditions induced by exposure to hydrogen peroxide. Btn2 and Hsp42 act to sequester oxidized proteins into defined PQC sites following ROS exposure and their absence leads to an accumulation of protein aggregates. The toxicity of protein aggregate accumulation causes oxidant sensitivity in btn2 hsp42 sequestrase mutants since overexpression of the Hsp104 disaggregase rescues oxidant tolerance. We have identified the Sup35 translation termination factor as an in vivo sequestrase substrate and show that Btn2 and Hsp42 act to suppress oxidant-induced formation of the yeast [PSI+] prion, which is the amyloid form of Sup35. [PSI+] prion formation in sequestrase mutants does not require IPOD (insoluble protein deposit) localization which is the site where amyloids are thought to undergo fragmentation and seeding to propagate their heritable prion form. Instead, both amorphous and amyloid Sup35 aggregates are increased in btn2 hsp42 mutants consistent with the idea that prion formation occurs at multiple intracellular sites during oxidative stress conditions in the absence of sequestrase activity. Taken together, our data identify protein sequestration as a key antioxidant defence mechanism that functions to mitigate the damaging consequences of protein oxidation-induced aggregation.
Collapse
Affiliation(s)
- Zorana Carter
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Declan Creamer
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Aikaterini Kouvidi
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Chris M Grant
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| |
Collapse
|
3
|
Du Z, Cho B, Li L. Identifying Endogenous Cellular Proteins Destabilizing the Propagation of Swi1 Prion upon Overproduction. Viruses 2022; 14:1366. [PMID: 35891348 PMCID: PMC9321512 DOI: 10.3390/v14071366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023] Open
Abstract
(1) Background: Numerous prions exist in the budding yeast, including [SWI+], the prion form of Swi1-a subunit of the chromatin-remodeling complex SWI/SNF. Despite decades of research, the molecular mechanisms underlying prion initiation and propagation are not fully understood. In this study, we aimed to identify endogenous cellular proteins that destabilize [SWI+]. (2) Methods: We screened the MoBY-ORF 2.0 library for proteins that destabilize [SWI+] upon overproduction. We further explored the effects of the identified candidates against other yeast prions and analyzed their potential prion-curing mechanisms. (3) Results: Eighty-two [SWI+] suppressors were identified, and their effects were shown to be [SWI+]-specific. Interestingly, a few documented [SWI+] suppressors were not among the identified hits. Further experiments indicate that, for some of these [SWI+] suppressors, their overproduction, and thus their prion-curing activities, are regulated by environmental conditions. Bioinformatics analyses show that our identified [SWI+] suppressors are involved in diverse biological functions, with gene ontology term enrichments specifically for transcriptional regulation and translation. Competition for Swi1 monomers between [SWI+] and Swi1 interactors, including the SWI/SNF complex, is a potential prion-curing mechanism. (4) Conclusions: We identified a number of [SWI+]-specific suppressors that highlight unique features of [SWI+] in maintaining its self-perpetuating conformations.
Collapse
Affiliation(s)
- Zhiqiang Du
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | | | - Liming Li
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
4
|
Kushnirov VV, Dergalev AA, Alieva MK, Alexandrov AI. Structural Bases of Prion Variation in Yeast. Int J Mol Sci 2022; 23:ijms23105738. [PMID: 35628548 PMCID: PMC9147965 DOI: 10.3390/ijms23105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Amyloids are protein aggregates with a specific filamentous structure that are related to a number of human diseases, and also to some important physiological processes in animals and other kingdoms of life. Amyloids in yeast can stably propagate as heritable units, prions. Yeast prions are of interest both on their own and as a model for amyloids and prions in general. In this review, we consider the structure of yeast prions and its variation, how such structures determine the balance of aggregated and soluble prion protein through interaction with chaperones and how the aggregated state affects the non-prion functions of these proteins.
Collapse
|
5
|
Differential Interactions of Molecular Chaperones and Yeast Prions. J Fungi (Basel) 2022; 8:jof8020122. [PMID: 35205876 PMCID: PMC8877571 DOI: 10.3390/jof8020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Baker’s yeast Saccharomyces cerevisiae is an important model organism that is applied to study various aspects of eukaryotic cell biology. Prions in yeast are self-perpetuating heritable protein aggregates that can be leveraged to study the interaction between the protein quality control (PQC) machinery and misfolded proteins. More than ten prions have been identified in yeast, of which the most studied ones include [PSI+], [URE3], and [PIN+]. While all of the major molecular chaperones have been implicated in propagation of yeast prions, many of these chaperones differentially impact propagation of different prions and/or prion variants. In this review, we summarize the current understanding of the life cycle of yeast prions and systematically review the effects of different chaperone proteins on their propagation. Our analysis clearly shows that Hsp40 proteins play a central role in prion propagation by determining the fate of prion seeds and other amyloids. Moreover, direct prion-chaperone interaction seems to be critically important for proper recruitment of all PQC components to the aggregate. Recent results also suggest that the cell asymmetry apparatus, cytoskeleton, and cell signaling all contribute to the complex network of prion interaction with the yeast cell.
Collapse
|
6
|
Garai S, Citu, Singla-Pareek SL, Sopory SK, Kaur C, Yadav G. Complex Networks of Prion-Like Proteins Reveal Cross Talk Between Stress and Memory Pathways in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:707286. [PMID: 34381483 PMCID: PMC8350573 DOI: 10.3389/fpls.2021.707286] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/29/2021] [Indexed: 08/01/2023]
Abstract
Prions are often considered as molecular memory devices, generating reproducible memory of a conformational change. Prion-like proteins (PrLPs) have been widely demonstrated to be present in plants, but their role in plant stress and memory remains unexplored. In this work, we report the widespread presence of PrLPs in plants through a comprehensive meta-analysis of 39 genomes representing major taxonomic groups. We find diverse functional roles associated with these proteins in various species and term the full complement of PrLPs in a genome as its "prionome." In particular, we found the rice prionome being significantly enriched in transposons/retrotransposons (Ts/RTRs) and identified over 60 rice PrLPs that were differentially regulated in stress and developmental responses. This prompted us to explore whether and to what extent PrLPs may build stress memory. By integrating the available rice interactome, transcriptome, and regulome data sets, we could find links between stress and memory pathways that would not have otherwise been discernible. Regulatory inferences derived from the superimposition of these data sets revealed a complex network and cross talk between PrLPs, transcription factors (TFs), and the genes involved in stress priming. This integrative meta-analysis connects transient and transgenerational memory mechanisms in plants with PrLPs, suggesting that plant memory may rely upon protein-based signals in addition to chromatin-based epigenetic signals. Taken together, our work provides important insights into the anticipated role of prion-like candidates in stress and memory, paving the way for more focused studies for validating the role of the identified PrLPs in memory acclimation.
Collapse
Affiliation(s)
- Sampurna Garai
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Citu
- Computational Biology Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sudhir K. Sopory
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Charanpreet Kaur
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Gitanjali Yadav
- Computational Biology Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Fomicheva A, Ross ED. From Prions to Stress Granules: Defining the Compositional Features of Prion-Like Domains That Promote Different Types of Assemblies. Int J Mol Sci 2021; 22:ijms22031251. [PMID: 33513942 PMCID: PMC7865556 DOI: 10.3390/ijms22031251] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules are ribonucleoprotein assemblies that form in response to cellular stress. Many of the RNA-binding proteins found in stress granule proteomes contain prion-like domains (PrLDs), which are low-complexity sequences that compositionally resemble yeast prion domains. Mutations in some of these PrLDs have been implicated in neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia, and are associated with persistent stress granule accumulation. While both stress granules and prions are macromolecular assemblies, they differ in both their physical properties and complexity. Prion aggregates are highly stable homopolymeric solids, while stress granules are complex dynamic biomolecular condensates driven by multivalent homotypic and heterotypic interactions. Here, we use stress granules and yeast prions as a paradigm to examine how distinct sequence and compositional features of PrLDs contribute to different types of PrLD-containing assemblies.
Collapse
|
8
|
Levkovich SA, Rencus-Lazar S, Gazit E, Laor Bar-Yosef D. Microbial Prions: Dawn of a New Era. Trends Biochem Sci 2021; 46:391-405. [PMID: 33423939 DOI: 10.1016/j.tibs.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Protein misfolding and aggregation are associated with human diseases and aging. However, microorganisms widely exploit the self-propagating properties of misfolded infectious protein particles, prions, as epigenetic information carriers that drive various phenotypic adaptations and encode molecular information. Microbial prion research has faced a paradigm shift in recent years, with breakthroughs that demonstrate the great functional and structural diversity of these agents. Here, we outline unorthodox examples of microbial prions in yeast and other microorganisms, focusing on their noncanonical functions. We discuss novel molecular mechanisms for the inheritance of conformationally-encoded epigenetic information and the evolutionary advantages they confer. Lastly, in light of recent advancements in the field of molecular self-assembly, we present a hypothesis regarding the existence of non-proteinaceous prion-like entities.
Collapse
Affiliation(s)
- Shon A Levkovich
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv, Israel.
| | - Dana Laor Bar-Yosef
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
9
|
Mutations Outside the Ure2 Amyloid-Forming Region Disrupt [URE3] Prion Propagation and Alter Interactions with Protein Quality Control Factors. Mol Cell Biol 2020; 40:MCB.00294-20. [PMID: 32868289 DOI: 10.1128/mcb.00294-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
The yeast prion [URE3] propagates as a misfolded amyloid form of the Ure2 protein. Propagation of amyloid-based yeast prions requires protein quality control (PQC) factors, and altering PQC abundance or activity can cure cells of prions. Yeast antiprion systems composed of PQC factors act at normal abundance to restrict establishment of the majority of prion variants that arise de novo While these systems are well described, how they or other PQC factors interact with prion proteins remains unclear. To gain insight into such interactions, we identified mutations outside the Ure2 prion-determining region that destabilize [URE3]. Despite residing in the functional domain, 16 of 17 mutants retained Ure2 activity. Four characterized mutations caused rapid loss of [URE3] yet allowed [URE3] to propagate under prion-selecting conditions. Two sensitized [URE3] to Btn2, Cur1, and Hsp42, but in different ways. Two others reduced amyloid formation in vitro Of these, one impaired prion replication and the other apparently impaired transmission. Thus, widely dispersed sites outside a prion's amyloid-forming region can contribute to prion character, and altering such sites can disrupt prion propagation by altering interactions with PQC factors.
Collapse
|
10
|
From Seeds to Fibrils and Back: Fragmentation as an Overlooked Step in the Propagation of Prions and Prion-Like Proteins. Biomolecules 2020; 10:biom10091305. [PMID: 32927676 PMCID: PMC7563560 DOI: 10.3390/biom10091305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Many devastating neurodegenerative diseases are driven by the misfolding of normal proteins into a pathogenic abnormal conformation. Examples of such protein misfolding diseases include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and prion diseases. The misfolded proteins involved in these diseases form self-templating oligomeric assemblies that recruit further correctly folded protein and induce their conversion. Over time, this leads to the formation of high molecular and mostly fibrillar aggregates that are increasingly inefficient at converting normal protein. Evidence from a multitude of in vitro models suggests that fibrils are fragmented to form new seeds, which can convert further normal protein and also spread to neighboring cells as observed in vivo. While fragmentation and seed generation were suggested as crucial steps in aggregate formation decades ago, the biological pathways involved remain largely unknown. Here, we show that mechanisms of aggregate clearance—namely the mammalian Hsp70–Hsp40–Hsp110 tri-chaperone system, macro-autophagy, and the proteasome system—may not only be protective, but also play a role in fragmentation. We further review the challenges that exist in determining the precise contribution of these mechanisms to protein misfolding diseases and suggest future directions to resolve these issues.
Collapse
|
11
|
Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. ADVANCES IN GENETICS 2020; 105:293-380. [PMID: 32560789 PMCID: PMC7527210 DOI: 10.1016/bs.adgen.2020.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia.
| | - Anastasia V Grizel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew A Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
12
|
Shewmaker F, Masison D. 25 years of yeast prions. Prion 2020; 14:29-30. [PMID: 31906798 PMCID: PMC6959295 DOI: 10.1080/19336896.2019.1710420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Frank Shewmaker
- Department of Biochemistry, Uniformed Services University, Bethesda, MD, USA
| | - Dan Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Killian AN, Miller SC, Hines JK. Impact of Amyloid Polymorphism on Prion-Chaperone Interactions in Yeast. Viruses 2019; 11:v11040349. [PMID: 30995727 PMCID: PMC6521183 DOI: 10.3390/v11040349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 12/22/2022] Open
Abstract
Yeast prions are protein-based genetic elements found in the baker's yeast Saccharomyces cerevisiae, most of which are amyloid aggregates that propagate by fragmentation and spreading of small, self-templating pieces called propagons. Fragmentation is carried out by molecular chaperones, specifically Hsp104, Hsp70, and Hsp40. Like other amyloid-forming proteins, amyloid-based yeast prions exhibit structural polymorphisms, termed "strains" in mammalian systems and "variants" in yeast, which demonstrate diverse phenotypes and chaperone requirements for propagation. Here, the known differential interactions between chaperone proteins and yeast prion variants are reviewed, specifically those of the yeast prions [PSI+], [RNQ+]/[PIN+], and [URE3]. For these prions, differences in variant-chaperone interactions (where known) with Hsp104, Hsp70s, Hsp40s, Sse1, and Hsp90 are summarized, as well as some interactions with chaperones of other species expressed in yeast. As amyloid structural differences greatly impact chaperone interactions, understanding and accounting for these variations may be crucial to the study of chaperones and both prion and non-prion amyloids.
Collapse
Affiliation(s)
- Andrea N Killian
- Department of Chemistry, Lafayette College, Easton, PA 18042, USA.
| | - Sarah C Miller
- Department of Chemistry, Lafayette College, Easton, PA 18042, USA.
| | - Justin K Hines
- Department of Chemistry, Lafayette College, Easton, PA 18042, USA.
| |
Collapse
|
14
|
Affiliation(s)
- Lila M Gierasch
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003; Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|