1
|
Rao R, Gulfishan M, Kim MS, Kashyap MK. Deciphering Cancer Complexity: Integrative Proteogenomics and Proteomics Approaches for Biomarker Discovery. Methods Mol Biol 2025; 2859:211-237. [PMID: 39436604 DOI: 10.1007/978-1-0716-4152-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Proteomics has revolutionized the field of cancer biology because the use of a large number of in vivo (SILAC), in vitro (iTRAQ, ICAT, TMT, stable-isotope Dimethyl, and 18O) labeling techniques or label-free methods (spectral counting or peak intensities) coupled with mass spectrometry enables us to profile and identify dysregulated proteins in diseases such as cancer. These proteome and genome studies have led to many challenges, such as the lack of consistency or correlation between copy numbers, RNA, and protein-level data. This review covers solely mass spectrometry-based approaches used for cancer biomarker discovery. It also touches on the emerging role of oncoproteogenomics or proteogenomics in cancer biomarker discovery and how this new area is attracting the integration of genomics and proteomics areas to address some of the important questions to help impinge on the biology and pathophysiology of different malignancies to make these mass spectrometry-based studies more realistic and relevant to clinical settings.
Collapse
Affiliation(s)
- Rashmi Rao
- School of Life and Allied Health Sciences, Glocal University, Saharanpur, UP, India
| | - Mohd Gulfishan
- School of Life and Allied Health Sciences, Glocal University, Saharanpur, UP, India
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute (ASCI), Amity Medical School (AMS), Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
2
|
Meng Z, Saei AA, Gharibi H, Zhang X, Lyu H, Lundström SL, Végvári Á, Gaetani M, Zubarev RA. Gel-Assisted Proteome Position Integral Shift Assay Returns Molecular Weight to Shotgun Proteomics and Identifies Caspase 3 Substrates. Anal Chem 2024; 96:13533-13541. [PMID: 39110629 PMCID: PMC11339726 DOI: 10.1021/acs.analchem.4c02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024]
Abstract
Here, we present a high-throughput virtual top-down proteomics approach that restores the molecular weight (MW) information in shotgun proteomics and demonstrates its utility in studying proteolytic events in programmed cell death. With gel-assisted proteome position integral shift (GAPPIS), we quantified over 7000 proteins in staurosporine-induced apoptotic HeLa cells and identified 84 proteins exhibiting in a statistically significant manner at least two of the following features: (i) a negative MW shift; (ii) an elevated ratio in a pair of a semitryptic and tryptic peptide, (iii) a negative shift in the standard deviation of MW estimated for different peptides, and (iv) a negative shift in skewness of the same data. Of these proteins, 58 molecules were previously unreported caspase 3 substrates. Further analysis identified the preferred cleavage sites consistent with the known caspase cleavages after the DXXD motif. As a powerful tool for high-throughput MW analysis simultaneously with the conventional expression analysis, the GAPPIS assay can prove useful in studying a broad range of biological processes involving proteolytic events.
Collapse
Affiliation(s)
- Zhaowei Meng
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
- Chemical
Proteomics Unit, Science for Life Laboratory
(SciLifeLab), Stockholm 17165, Sweden
- Chemical
Proteomics, Swedish National Infrastructure
for Biological Mass Spectrometry (BioMS), Stockholm 17177, Sweden
| | - Amir Ata Saei
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Hassan Gharibi
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
- Chemical
Proteomics Unit, Science for Life Laboratory
(SciLifeLab), Stockholm 17165, Sweden
- Chemical
Proteomics, Swedish National Infrastructure
for Biological Mass Spectrometry (BioMS), Stockholm 17177, Sweden
| | - Xuepei Zhang
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
- Chemical
Proteomics Unit, Science for Life Laboratory
(SciLifeLab), Stockholm 17165, Sweden
- Chemical
Proteomics, Swedish National Infrastructure
for Biological Mass Spectrometry (BioMS), Stockholm 17177, Sweden
| | - Hezheng Lyu
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
- HDXperts
AB, Danderyd 18212, Sweden
| | - Susanna L. Lundström
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
- Chemical
Proteomics Unit, Science for Life Laboratory
(SciLifeLab), Stockholm 17165, Sweden
- Chemical
Proteomics, Swedish National Infrastructure
for Biological Mass Spectrometry (BioMS), Stockholm 17177, Sweden
| | - Ákos Végvári
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Massimiliano Gaetani
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
- Chemical
Proteomics Unit, Science for Life Laboratory
(SciLifeLab), Stockholm 17165, Sweden
- Chemical
Proteomics, Swedish National Infrastructure
for Biological Mass Spectrometry (BioMS), Stockholm 17177, Sweden
| | - Roman A. Zubarev
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
- Chemical
Proteomics, Swedish National Infrastructure
for Biological Mass Spectrometry (BioMS), Stockholm 17177, Sweden
- The National
Medical Research Center for Endocrinology, Moscow 115478, Russia
- Department
of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia
- Department
of Pharmaceutical and Toxicological Chemistry, RUDN University, 6 Miklukho-Maklaya
St., Moscow 117198, Russia
| |
Collapse
|
3
|
Singh H, Jakhar R, Kirar M, Sehrawat N. A systematic evaluation of sample preparation and 2-D gel electrophoresis protocol for mosquito proteomic profiling. MethodsX 2024; 12:102677. [PMID: 38660035 PMCID: PMC11041838 DOI: 10.1016/j.mex.2024.102677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
-Mosquito act as the carrier insect to transfer pathogens into hosts for various vector-borne diseases.To identify the pathogenesis causing determinant, comprehensive knowledge of the protein expression in different tissues and physiological conditions is very important. The most widely used technique is 2-D gel electrophoresis to study the protein expression in mosquitoes. 2-D gel electrophoresis is the multistep process to resolve intact protein with similar molecular weight. It is also useful to separate post-translational modified protein, which are not distinguished through shotgun proteomic analysis. Here, we optimized the protocol for 2-D gel electrophoresis that can effectively resolve the protein in mosquitoes and some other insects, to target immunogenic protein to fight against the vector borne disease. The optimized 2-D protocol helps to resolve complex proteomic data which is very difficult to analyze in mosquitoes.The updated protocol improved the protein solubility, resolution and visualization that help in comparative analysis of protein expression.
Collapse
Affiliation(s)
- Hitesh Singh
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Renu Jakhar
- Indira Gandhi University, Meerpur, Rewari, Haryana, India
| | - Manisha Kirar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Neelam Sehrawat
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
4
|
Louati K, Maalej A, Kolsi F, Kallel R, Gdoura Y, Borni M, Hakim LS, Zribi R, Choura S, Sayadi S, Chamkha M, Mnif B, Khemakhem Z, Boudawara TS, Boudawara MZ, Safta F. Shotgun Proteomic-Based Approach with a Q-Exactive Hybrid Quadrupole-Orbitrap High-Resolution Mass Spectrometer for Protein Adductomics on a 3D Human Brain Tumor Neurospheroid Culture Model: The Identification of Adduct Formation in Calmodulin-Dependent Protein Kinase-2 and Annexin-A1 Induced by Pesticide Mixture. J Proteome Res 2023; 22:3811-3832. [PMID: 37906427 PMCID: PMC10696604 DOI: 10.1021/acs.jproteome.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Pesticides are increasingly used in combinations in crop protection, resulting in enhanced toxicities for various organisms. Although protein adductomics is challenging, it remains a powerful bioanalytical tool to check environmental exposure and characterize xenobiotic adducts as putative toxicity biomarkers with high accuracy, facilitated by recent advances in proteomic methodologies and a mass spectrometry high-throughput technique. The present study aims to predict the potential neurotoxicity effect of imidacloprid and λ-cyhalothrin insecticides on human neural cells. Our protocol consisted first of 3D in vitro developing neurospheroids derived from human brain tumors and then treatment by pesticide mixture. Furthermore, we adopted a bottom-up proteomic-based approach using nanoflow ultraperformance liquid chromatography coupled with a high-resolution mass spectrometer for protein-adduct analysis with prediction of altered sites. Two proteins were selected, namely, calcium-calmodulin-dependent protein kinase-II (CaMK2) and annexin-A1 (ANXA1), as key targets endowed with primordial roles. De novo sequencing revealed several adduct formations in the active site of 82-ANXA1 and 228-CaMK2 as a result of neurotoxicity, predicted by the added mass shifts for the structure of electrophilic precursors. To the best of our knowledge, our study is the first to adopt a proteomic-based approach to investigate in depth pesticide molecular interactions and their potential to adduct proteins which play a crucial role in the neurotoxicity mechanism.
Collapse
Affiliation(s)
- Kaouthar Louati
- Faculty
of Pharmacy, Laboratory of Pharmacology, Analytics & Galenic Drug
Development-LR12ES09, University of Monastir, Road Avicenne, Monastir 5000, Tunisia
| | - Amina Maalej
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, Sfax 3018, Tunisia
| | - Fatma Kolsi
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Rim Kallel
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Yassine Gdoura
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Mahdi Borni
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Leila Sellami Hakim
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
| | - Rania Zribi
- Higher
Institute of Applied Studies to Humanities of Tunis (ISEAHT), University of Tunis, 11 Road of Jebel Lakdhar, Tunis 1005, Tunisia
| | - Sirine Choura
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, Sfax 3018, Tunisia
| | - Sami Sayadi
- Biotechnology
Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Mohamed Chamkha
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, Sfax 3018, Tunisia
| | - Basma Mnif
- Department
of Bacteriology, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Zouheir Khemakhem
- Legal Medicine
Department, Habib Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Tahya Sellami Boudawara
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Mohamed Zaher Boudawara
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Fathi Safta
- Faculty
of Pharmacy, Laboratory of Pharmacology, Analytics & Galenic Drug
Development-LR12ES09, University of Monastir, Road Avicenne, Monastir 5000, Tunisia
| |
Collapse
|
5
|
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) is an elegant gel electrophoretic analytical tool for comparative protein assessment. It is based on two-dimensional gel electrophoresis (2D-GE) separation of fluorescently labeled protein extracts. The tagging procedures are designed to not interfere with the chemical properties of proteins with respect to their pI and electrophoretic mobility, once a proper labeling protocol is followed. The use of an internal pooled standard makes 2D-DIGE a highly accurate quantitative method enabling multiple protein samples to be separated on the same two-dimensional gel. Technical limitations of this technique (i.e., underrating of low abundant, high molecular mass and integral membrane proteins) are counterbalanced by the incomparable separation power which allows proteoforms and unknown PTM (posttranslational modification) identification. Moreover, the image matching and cross-gel statistical analysis generates robust quantitative results making data validation by independent technologies successful.
Collapse
Affiliation(s)
- Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy.
| |
Collapse
|
6
|
SUEYOSHI K, MATSUDA K, ENDO T, HISAMOTO H. Development of Capillary Devices for Digital Molecular Sieving Electrophoresis. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kenji SUEYOSHI
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Keita MATSUDA
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Tatsuro ENDO
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Hideaki HISAMOTO
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| |
Collapse
|
7
|
Lin TY, Hua WJ, Yeh H, Tseng AJ. Functional proteomic analysis reveals that fungal immunomodulatory protein reduced expressions of heat shock proteins correlates to apoptosis in lung cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153384. [PMID: 33113507 DOI: 10.1016/j.phymed.2020.153384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ling Zhi-8 (LZ-8) and GMI are two fungal immunomodulatory proteins (FIPs) with a similar structure and amino acid sequence and are respectively obtained from the medicinal mushroom Ganoderma lucidum and Ganoderma microsporum. They present the anti-cancer progression and metastasis. We previously demonstrated that LZ-8 reduces the tumor progression in lung cancer LLC1 cell-bearing mouse. However, it is unclear whether these FIPs induce changes in the protein expression profile in cancer cells and the mechanism for such a process is not defined. PURPOSE This study determines the changes in the proteomic profile for tumor lesions of LLC1 cell-bearing mouse received with LZ-8 and the potential mechanism for FIPs in anti-lung cancer cells. METHODS The proteomic profile of tumor lesions was determined using two-dimensional electrophoresis and a LTQ-OrbitrapXL mass spectrometer (LC-MS/MS). The biological processes and the signaling pathway enrichment analysis were performed using Ingenuity Pathway Analysis (IPA). The differentially expressed proteins were verified by Western blot. Cell viability was determined by MTT assay. Cell morphology was characterized using electron microscopy. Migration was detected using the Transwell assay. The apoptotic response was determined using Western blot and flow cytometry. RESULTS Obtained results showed that 21 proteins in the tumor lesions exhibited differential (2-fold change, p < 0.05) expression between PBS and LZ-8 treatment groups. LZ-8-induced changes in the proteomic profile that may relate to protein degradation pathways. Specifically, three heat shock proteins (HSPs), HSP60, 70 and 90, were significantly downregulated in tumor lesions of LLC1-bearing mouse received with LZ-8. Both LZ-8 and GMI reduced the protein levels for these HSPs in lung cancer cells. Functional studies showed that they inhibited cell migration but effectively induced apoptotic response in LLC1 cells in vitro. In addition, the inhibitors of HSP60 and HSP70 effectively inhibited cell migration and decreased cell viability of LLC1 cells. CONCLUSIONS LZ-8 induced changes in the proteomic profile of tumor lesions which may regulate the HSPs-related cell viability. Moreover, inhibition of HSPs may be related to the anti-lung cancer activity.
Collapse
Affiliation(s)
- Tung-Yi Lin
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan; Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.
| | - Wei-Jyun Hua
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan; Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Hsin Yeh
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ai-Jung Tseng
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
8
|
Smolikova G, Gorbach D, Lukasheva E, Mavropolo-Stolyarenko G, Bilova T, Soboleva A, Tsarev A, Romanovskaya E, Podolskaya E, Zhukov V, Tikhonovich I, Medvedev S, Hoehenwarter W, Frolov A. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int J Mol Sci 2020; 21:E9162. [PMID: 33271881 PMCID: PMC7729594 DOI: 10.3390/ijms21239162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Daria Gorbach
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Gregory Mavropolo-Stolyarenko
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Ekaterina Romanovskaya
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Ekaterina Podolskaya
- Institute of Analytical Instrumentation, Russian Academy of Science; 190103 St. Petersburg, Russia;
- Institute of Toxicology, Russian Federal Medical Agency; 192019 St. Petersburg, Russia
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University; 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| |
Collapse
|
9
|
Qazi AS, Akbar S, Saeed RF, Bhatti MZ. Translational Research in Oncology. 'ESSENTIALS OF CANCER GENOMIC, COMPUTATIONAL APPROACHES AND PRECISION MEDICINE 2020:261-311. [DOI: 10.1007/978-981-15-1067-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Alessandro R, Fontana S, Kohn E, De Leo G. Proteomic Strategies and their Application in Cancer Research. TUMORI JOURNAL 2019; 91:447-55. [PMID: 16457140 DOI: 10.1177/030089160509100601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The understanding of carcinogenesis and tumor progression on a molecular basis needs a detailed study of proteins as effector molecules and as critical components of the multiple interconnected signaling pathways that drive the neoplastic phenotype. Thus, the proteomic approach represents a powerful tool for the challenge of the post-genomic era. The term “cancer proteome” refers to the collection of proteins expressed by a given cancer cell and should be considered as a highly dynamic entity within the cell, which affects a variety of cellular activities. The emerging proteomic analysis platforms including 2D-PAGE, mass spectrometry technologies, and protein microarrays represent powerful tools to study and understand cancer. These systems aim to not only identify, catalogue, and characterize cancer proteins, but also to unveil how they interact to affect overall tumor progression. Moreover, recent studies on various cancers have reported promising results concerning the detection of novel molecular biomarkers useful in the early diagnosis of cancer and in drug discovery. Thus, a new subdiscipline named clinical proteomics, concomitant with new molecular technologies that are developed, demonstrates promise to discover new cancer biomarkers. The early diagnosis of cancer, even in a premalignant state, is crucial for the successful treatment of this disease. For these reasons, it is clear that the identification of biomarkers for the early diagnosis of cancer should represent one of the main goals of this emerging field of study.
Collapse
Affiliation(s)
- Riccardo Alessandro
- Dipartimento di Biopatologia e Metodologie Biomediche, Università di Palermo, Palermo, Italy.
| | | | | | | |
Collapse
|
11
|
Zadeh Fakhar HB, Zali H, Rezaie-Tavirani M, Darkhaneh RF, Babaabasi B. Proteome profiling of low grade serous ovarian cancer. J Ovarian Res 2019; 12:64. [PMID: 31315664 PMCID: PMC6637464 DOI: 10.1186/s13048-019-0535-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
Background Serous carcinoma, the subtype of ovarian cancer has the highest occurrence and mortality in women. Proteomic profiling using mass spectrometry (MS) has been used to detect biomarkers in tissue s obtained from patients with ovarian cancer. Thus, this study aimed at analyzing the interactome (protein-protein interaction (PPI)) and (MS) data to inspect PPI networks in patients with Low grade serous ovarian cancer. Methods For proteome profiling in Low grade serous ovarian cancer, 2DE and mass spectrometry were used. Differentially expressed proteins which had been determined in Low grade serous ovarian cancer and experimental group separately were integrated with PPI data to construct the (QQPPI) networks. Results Six Hub-bottlenecks proteins with significant centrality values, based on centrality parameters of the network (Degree and between), were found including Transgelin (TAGLN), Keratin (KRT14), Single peptide match to actin, cytoplasmic 1(ACTB), apolipoprotein A-I (APOA1), Peroxiredoxin-2 (PRDX2), and Haptoglobin (HP). Discussion This study showed these six proteins were introduced as hub-bottleneck protein. It can be concluded that regulation of gene expression can have a critical role in the pathology of Low-grade serous ovarian cancer.
Collapse
Affiliation(s)
| | - Hakimeh Zali
- Proteomics Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Babak Babaabasi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Blundon M, Ganesan V, Redler B, Van PT, Minden JS. Two-Dimensional Difference Gel Electrophoresis. Methods Mol Biol 2019; 1855:229-247. [PMID: 30426421 DOI: 10.1007/978-1-4939-8793-1_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Two-dimensional difference gel electrophoresis (2D DIGE) is a modified form of 2D electrophoresis (2D E) that allows one to compare two or three protein samples simultaneously on the same gel. The proteins in each sample are covalently tagged with different color fluorescent dyes that are designed to have no effect on the relative migration of proteins during electrophoresis. Proteins that are common to the samples appear as "spots" with a fixed ratio of fluorescent signals, whereas proteins that differ between the samples have different fluorescence ratios. With conventional imaging systems, DIGE is capable of reliably detecting as little as 0.2 fmol of protein, and protein differences down to ± 15%, over a ~10,000-fold protein concentration range. DIGE combined with digital image analysis therefore greatly improves the statistical assessment of proteome variation. Here we describe a protocol for conducting DIGE experiments, which takes 2-3 days to complete. We have further improved upon 2D DIGE by introducing in-gel equilibration to improve protein retention during transfer between the first and second dimensions of electrophoresis and by developing a fluorescent gel imaging system with a millionfold dynamic range.
Collapse
Affiliation(s)
- Malachi Blundon
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Vinitha Ganesan
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Brendan Redler
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Phu T Van
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jonathan S Minden
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Pandeswari PB, Sabareesh V. Middle-down approach: a choice to sequence and characterize proteins/proteomes by mass spectrometry. RSC Adv 2018; 9:313-344. [PMID: 35521579 PMCID: PMC9059502 DOI: 10.1039/c8ra07200k] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
Owing to rapid growth in the elucidation of genome sequences of various organisms, deducing proteome sequences has become imperative, in order to have an improved understanding of biological processes. Since the traditional Edman method was unsuitable for high-throughput sequencing and also for N-terminus modified proteins, mass spectrometry (MS) based methods, mainly based on soft ionization modes: electrospray ionization and matrix-assisted laser desorption/ionization, began to gain significance. MS based methods were adaptable for high-throughput studies and applicable for sequencing N-terminus blocked proteins/peptides too. Consequently, over the last decade a new discipline called 'proteomics' has emerged, which encompasses the attributes necessary for high-throughput identification of proteins. 'Proteomics' may also be regarded as an offshoot of the classic field, 'biochemistry'. Many protein sequencing and proteomic investigations were successfully accomplished through MS dependent sequence elucidation of 'short proteolytic peptides (typically: 7-20 amino acid residues), which is called the 'shotgun' or 'bottom-up (BU)' approach. While the BU approach continues as a workhorse for proteomics/protein sequencing, attempts to sequence intact proteins without proteolysis, called the 'top-down (TD)' approach started, due to ambiguities in the BU approach, e.g., protein inference problem, identification of proteoforms and the discovery of posttranslational modifications (PTMs). The high-throughput TD approach (TD proteomics) is yet in its infancy. Nevertheless, TD characterization of purified intact proteins has been useful for detecting PTMs. With the hope to overcome the pitfalls of BU and TD strategies, another concept called the 'middle-down (MD)' approach was put forward. Similar to BU, the MD approach also involves proteolysis, but in a restricted manner, to produce 'longer' proteolytic peptides than the ones usually obtained in BU studies, thereby providing better sequence coverage. In this regard, special proteases (OmpT, Sap9, IdeS) have been used, which can cleave proteins to produce longer proteolytic peptides. By reviewing ample evidences currently existing in the literature that is predominantly on PTM characterization of histones and antibodies, herein we highlight salient features of the MD approach. Consequently, we are inclined to claim that the MD concept might have widespread applications in future for various research areas, such as clinical, biopharmaceuticals (including PTM analysis) and even for general/routine characterization of proteins including therapeutic proteins, but not just limited to analysis of histones or antibodies.
Collapse
Affiliation(s)
- P Boomathi Pandeswari
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| | - Varatharajan Sabareesh
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| |
Collapse
|
14
|
Sheikh MH, Solito E. Annexin A1: Uncovering the Many Talents of an Old Protein. Int J Mol Sci 2018; 19:E1045. [PMID: 29614751 PMCID: PMC5979524 DOI: 10.3390/ijms19041045] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
Annexin A1 (ANXA1) has long been classed as an anti-inflammatory protein due to its control over leukocyte-mediated immune responses. However, it is now recognized that ANXA1 has widespread effects beyond the immune system with implications in maintaining the homeostatic environment within the entire body due to its ability to affect cellular signalling, hormonal secretion, foetal development, the aging process and development of disease. In this review, we aim to provide a global overview of the role of ANXA1 covering aspects of peripheral and central inflammation, immune repair and endocrine control with focus on the prognostic, diagnostic and therapeutic potential of the molecule in cancer, neurodegeneration and inflammatory-based disorders.
Collapse
Affiliation(s)
- Madeeha H Sheikh
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Egle Solito
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
15
|
Abstract
Two-dimensional difference gel electrophoresis (2-D DIGE) is an advanced and elegant gel electrophoretic analytical tool for comparative protein assessment. It is based on two-dimensional gel electrophoresis (2-DE) separation of fluorescently labeled protein extracts. The tagging procedures are designed to not interfere with the chemical properties of proteins with respect to their pI and electrophoretic mobility, once a proper labeling protocol is followed. The two-dye or three-dye systems can be adopted and their choice depends on specific applications. Furthermore, the use of an internal pooled standard makes 2-D DIGE a highly accurate quantitative method enabling multiple protein samples to be separated on the same two-dimensional gel. The image matching and cross-gel statistical analysis generates robust quantitative results making data validation by independent technologies successful.
Collapse
Affiliation(s)
- Cecilia Gelfi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via f.lli Cervi, 93, 20090, Segrate, Milan, Italy.
- U.O. Proteomica clinica, IRCCS Policlinico San Donato, 20097, San Donato, Milan, Italy.
- Istituto di Bioimmagini e Fisiologia Molecolare, CNR, 20090, Segrate, Milan, Italy.
| | - Daniele Capitanio
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via f.lli Cervi, 93, 20090, Segrate, Milan, Italy
| |
Collapse
|
16
|
陈 壮, 肖 耀, 黄 泽, 陈 彤, 赵 善, 姜 耀, 吴 芃, 郑 少. [Quantitative and comparative proteomics analysis in clear cell renal cell carcinoma and adjacent noncancerous tissues by 2-D DIGE]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1517-1522. [PMID: 29180334 PMCID: PMC6779643 DOI: 10.3969/j.issn.1673-4254.2017.11.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To identify specific protein markers for renal cell carcinoma detection and diagnosis, as well as develop new potential therapeutic targets of the disease. METHODS We used two-dimensional difference in-gel electrophoresis (2-D DIGE) technique conjunction with mass spectrometry (MS) for the identification of significant differentially expressed proteins between 15cases of paired clear cell renal cell carcinoma (ccRCC) and adjacent normal renal tissues. The protein spots were considered as differentially expressed if a 1.5-fold altered expression level was observed (Student's t test, P value<0.05). RESULTS Of the 27 differentially expressed protein spots, 26 proteins were successfully identified. 11 proteins up-regulated in renal cell carcinoma,15 proteins down-regulated. Among them Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial (ACDSB), Aldose 1-epimerase (GALM), Peroxiredoxin-4 (PRDX4), Macrophage-capping protein (CAPG), Beta-defensin 107 (D107A), Microfibril-associated glycoprotein 4 (MFAP4) were first time screening as new differential expressed proteins by protomic study in renal cell carcinoma. CONCLUSIONS 2-D DIGE is a useful technique for screening and analysis differential expressed proteins in renal cell carcinoma. These new differently expressed proteins may be useful for development new molecular markers for the tumor.
Collapse
Affiliation(s)
- 壮飞 陈
- 南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 耀军 肖
- 广州医学院附属武警医院泌尿外科,广东 广州 510000Department of Urology, Armed Police Hospital of Guangdong Province, Guangzhou 510507, China
| | - 泽海 黄
- 南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 彤 陈
- 南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 善超 赵
- 南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 耀东 姜
- 南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 芃 吴
- 南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 少斌 郑
- 南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Fu Y, Wang N, Yang A, Law HKW, Li L, Yan F. Highly Sensitive Detection of Protein Biomarkers with Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703787. [PMID: 28922492 DOI: 10.1002/adma.201703787] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/08/2017] [Indexed: 06/07/2023]
Abstract
The analysis of protein biomarkers is of great importance in the diagnosis of diseases. Although many convenient and low-cost electrochemical approaches have been extensively investigated, they are not sensitive enough in the detection of protein biomarkers with low concentrations in physiological environments. Here, this study reports a novel organic-electrochemical-transistor-based biosensor that can successfully detect cancer protein biomarkers with ultrahigh sensitivity. The devices are operated by detecting electrochemical activity on gate electrodes, which is dependent on the concentrations of proteins labeled with catalytic nanoprobes. The protein sensors can specifically detect a cancer biomarker, human epidermal growth factor receptor 2, down to the concentration of 10-14 g mL-1 , which is several orders of magnitude lower than the detection limits of previously reported electrochemical approaches. Moreover, the devices can successfully differentiate breast cancer cells from normal cells at various concentrations. The ultrahigh sensitivity of the protein sensors is attributed to the inherent amplification function of the organic electrochemical transistors. This work paves a way for developing highly sensitive and low-cost biosensors for the detection of various protein biomarkers in clinical analysis in the future.
Collapse
Affiliation(s)
- Ying Fu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Naixiang Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Anneng Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Helen Ka-Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Li Li
- Institute of Textiles Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
18
|
Powell AGMT, Hughes DL, Brown J, Larsen M, Witherspoon J, Lewis WG. Esophageal cancer's 100 most influential manuscripts: a bibliometric analysis. Dis Esophagus 2017; 30:1-8. [PMID: 28375483 DOI: 10.1093/dote/dow039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 12/11/2022]
Abstract
Bibliometric analysis highlights key topics and publications that have shaped the understanding and management of esophageal cancer (EC). Here, the 100 most cited manuscripts in the field of EC are analyzed. The Thomson Reuters Web of Science database with the search terms 'esophageal cancer' or 'esophageal carcinoma' or 'oesophageal cancer' or 'oesophageal carcinoma' or 'gastroscopy' was used to identify all English language full manuscripts for the study. The 100 most cited papers were further analyzed by topic, journal, author, year, and institution. A total of 121,556 eligible papers were returned and the median (range) citation number was 406.5 (1833 to 293). The most cited paper focused on the role of perioperative chemotherpy in EC (1833 citations). Gastroenterology published the highest number of papers (n = 15, 6362 citations) and The New England Journal of Medicine received the most citations (n = 12, 12125 citations). The country and year with the greatest number of publications were the USA (n = 50), and 1998, 1999, and 2000 (n = 7). The most ubiquitous topic was the pathology of EC (n = 66) followed by management of EC (n = 54), and studies related to EC prognosis (n = 44). The most cited manuscripts highlighted the pathology, management, and prognosis of EC and this bibliometirc review provides the most influential references serving as a guide to popular research themes.
Collapse
Affiliation(s)
- A G M T Powell
- Division of Cancer and Genetics, Cardiff University, University Hospital of Wales, Cardiff, UK.,Department of Surgery, University Hospital of Wales, Cardiff, UK
| | - D L Hughes
- Department of Surgery, University Hospital of Wales, Cardiff, UK
| | - J Brown
- Department of Surgery, University Hospital of Wales, Cardiff, UK
| | - M Larsen
- Department of Surgery, University Hospital of Wales, Cardiff, UK
| | - J Witherspoon
- Department of Surgery, University Hospital of Wales, Cardiff, UK
| | - W G Lewis
- Department of Surgery, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
19
|
Abstract
The history of the differential diagnosis of ovarian neoplasms at the preoperative stage is presented in the review article. This is still a problem due to the high incidence of tumors and tumor-like formations of ovaries, the continuing upward trend in the index of ovarian cancer, along with a slight decrease in mortality and 5-year survival. Considerable success of surgical treatment and chemotherapy in the early stages of ovarian cancer suggests the earliest possible detection and accuracy of differential diagnosis of ovarian neoplasms. It highlights the role of the different research methods, including radiation imaging techniques, tumor markers and their potential advantages and disadvantages.
Collapse
|
20
|
Gillespie JW, Gannot G, Tangrea MA, Ahram M, Best CJM, Bichsel VE, Petricoin EF, Emmert-Buck MR, Chuaqui RF. Molecular Profiling of Cancer. Toxicol Pathol 2016; 32 Suppl 1:67-71. [PMID: 15209405 DOI: 10.1080/01926230490430728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The objective of molecular profiling of cancer is to determine the differential expression of genes and proteins from human tissue in the progression from normal precursor tissue to preneoplastic tissue to cancer in order to discover diagnostic, prognostic, and therapeutic markers. With the development of high-throughput analytical techniques such as microarrays and 2-D PAGE as well as the development of tools for cell procurement from histological sections such as laser capture microdissection (LCM), it is now possible to perform molecular analyses on specific cell populations from tissue. Since recognition of specific cell populations is critical, there is a need to optimize fixation and embedding not only to improve preservation of biomolecules, but also to maintain excellent histology. We have shown that 70% ethanol fixation of prostate tissue improves the recovery of DNA, RNA, and proteins over routine formalin fixation and maintains histological quality comparable to formalin. There is also a need to develop new technologies in order to expand the range of tissue types that can be analyzed. The development and applications of Layered Expression Scanning (LES) for the molecular analysis of whole tissue sections are discussed.
Collapse
Affiliation(s)
- John W Gillespie
- Science Applications International Corporation, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wetmore BA, Merrick BA. Invited Review: Toxicoproteomics: Proteomics Applied to Toxicology and Pathology. Toxicol Pathol 2016; 32:619-42. [PMID: 15580702 DOI: 10.1080/01926230490518244] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Global measurement of proteins and their many attributes in tissues and biofluids defines the field of proteomics. Toxicoproteomics, as part of the larger field of toxicogenomics, seeks to identify critical proteins and pathways in biological systems that are affected by and respond to adverse chemical and environmental exposures using global protein expression technologies. Toxicoproteomics integrates 3 disciplinary areas: traditional toxicology and pathology, differential protein and gene expression analysis, and systems biology. Key topics to be reviewed are the evolution of proteomics, proteomic technology platforms and their capabilities with exemplary studies from biology and medicine, a review of over 50 recent studies applying proteomic analysis to toxicological research, and the recent development of databases designed to integrate -Omics technologies with toxicology and pathology. Proteomics is examined for its potential in discovery of new biomarkers and toxicity signatures, in mapping serum, plasma, and other biofluid proteomes, and in parallel proteomic and transcriptomic studies. The new field of toxicoproteomics is uniquely positioned toward an expanded understanding of protein expression during toxicity and environmental disease for the advancement of public health.
Collapse
Affiliation(s)
- Barbara A Wetmore
- National Center for Toxicogenomics, National Institute of Environmental Health Sciences, Research Triangle Park, North Caroline 27709, USA
| | | |
Collapse
|
22
|
Önder Ö, Sidoli S, Carroll M, Garcia BA. Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Rev Proteomics 2016; 12:499-517. [PMID: 26400466 DOI: 10.1586/14789450.2015.1084231] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin biology and epigenetics are scientific fields that are rapid expanding due to their fundamental role in understanding cell development, heritable characters and progression of diseases. Histone post-translational modifications (PTMs) are major regulators of the epigenetic machinery due to their ability to modulate gene expression, DNA repair and chromosome condensation. Large-scale strategies based on mass spectrometry have been impressively improved in the last decade, so that global changes of histone PTM abundances are quantifiable with nearly routine proteomics analyses and it is now possible to determine combinatorial patterns of modifications. Presented here is an overview of the most utilized and newly developed proteomics strategies for histone PTM characterization and a number of case studies where epigenetic mechanisms have been comprehensively characterized. Moreover, a number of current epigenetic therapies are illustrated, with an emphasis on cancer.
Collapse
Affiliation(s)
- Özlem Önder
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA.,b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin Carroll
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA
| | - Benjamin A Garcia
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
23
|
Dias MH, Kitano ES, Zelanis A, Iwai LK. Proteomics and drug discovery in cancer. Drug Discov Today 2016; 21:264-77. [PMID: 26484434 DOI: 10.1016/j.drudis.2015.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/30/2015] [Accepted: 10/12/2015] [Indexed: 12/14/2022]
|
24
|
Zhan X, Wang X, Cheng T. Human Pituitary Adenoma Proteomics: New Progresses and Perspectives. Front Endocrinol (Lausanne) 2016; 7:54. [PMID: 27303365 PMCID: PMC4885873 DOI: 10.3389/fendo.2016.00054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenoma (PA) is a common intracranial neoplasm that impacts on human health through interfering hypothalamus-pituitary-target organ axis systems. The development of proteomics gives great promises in the clarification of molecular mechanisms of a PA and discovery of effective biomarkers for prediction, prevention, early-stage diagnosis, and treatment for a PA. A great progress in the field of PA proteomics has been made in the past 10 years, including (i) the use of laser-capture microdissection, (ii) proteomics analyses of functional PAs (such as prolactinoma), invasive and non-invasive non-functional pituitary adenomas (NFPAs), protein post-translational modifications such as phosphorylation and tyrosine nitration, NFPA heterogeneity, and hormone isoforms, (iii) the use of protein antibody array, (iv) serum proteomics and peptidomics, (v) the integration of proteomics and other omics data, and (vi) the proposal of multi-parameter systematic strategy for a PA. This review will summarize these progresses of proteomics in PAs, point out the existing drawbacks, propose the future research directions, and address the clinical relevance of PA proteomics data, in order to achieve our long-term goal that is use of proteomics to clarify molecular mechanisms, construct molecular networks, and discover effective biomarkers.
Collapse
Affiliation(s)
- Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, China
- *Correspondence: Xianquan Zhan,
| | - Xiaowei Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Cheng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
van der Ree AM, Mutapi F. The helminth parasite proteome at the host-parasite interface - Informing diagnosis and control. Exp Parasitol 2015; 157:48-58. [PMID: 26116863 DOI: 10.1016/j.exppara.2015.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/16/2015] [Accepted: 06/15/2015] [Indexed: 12/27/2022]
Abstract
Helminth parasites are a significant health burden for humans in the developing world and also cause substantial economic losses in livestock production across the world. The combined lack of vaccines for the major human and veterinary helminth parasites in addition to the development of drug resistance to anthelmintics in sheep and cattle mean that controlling helminth infection and pathology remains a challenge. However, recent high throughput technological advances mean that screening for potential drug and vaccine candidates is now easier than in previous decades. A better understanding of the host-parasite interactions occurring during infection and pathology and identifying pathways that can be therapeutically targeted for more effective and 'evolution proof' interventions is now required. This review highlights some of the advances that have been made in understanding the host-parasite interface in helminth infections using studies of the temporal expression of parasite proteins, i.e. the parasite proteome, and discuss areas for potential future research and translation.
Collapse
Affiliation(s)
- Anna M van der Ree
- Institute of Immunology & Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Francisca Mutapi
- Institute of Immunology & Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
26
|
Liu S, Li T, Yang G, Hu Y, Xiao X, Xu J, Zhang J, Liu L. Protein markers related to vascular responsiveness after hemorrhagic shock in rats. J Surg Res 2015; 196:149-58. [PMID: 25801977 DOI: 10.1016/j.jss.2015.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/27/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND Vascular hyporesponsiveness is an important pathophysiological feature of some critical conditions such as hemorrhagic shock. Many proteins and molecules are involved in the regulation of the pathologic process, however the mechanism has still remained unclear. Our study was intended to look for the related protein markers involved in the regulation of vascular reactivity after hemorrhagic shock. METHODS Differential in-gel electrophoresis and tandem mass spectrometry were applied to quantify the differences of protein expression in the superior mesenteric arteries from hemorrhagic shock and normal rats. RESULTS A total of 2317 differentially expressed protein spots in the superior mesenteric arteries of rats before and after hemorrhagic shock were found, and 146 protein spots were selected for tandem mass spectrometry identification. Thirty-seven differentially expressed proteins were obtained, including 3 uncharacterized proteins and 34 known proteins. Among them, heat shock protein beta-1 and calmodulin were the known proteins involved in the occurrence of vascular hyporesponsiveness. Bioinformatics analysis results showed that 18 proteins were related to vasoconstriction, 11 proteins may be involved in other vascular functions such as regulation of angiogenesis and endothelial cell proliferation. CONCLUSIONS The changes of vascular responsiveness after hemorrhagic shock in rats may be associated with the upregulation or downregulation of previously mentioned protein expressions. These findings may provide the basis for understanding and further study of the mechanism and treatment targets of vascular hyporeactivity after shock.
Collapse
Affiliation(s)
- Shangqing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China; Experimental Teaching Centre of Human Anatomy, School of Basic Medical Sciences, North Sichuan Medical College, Nangchong, Sichuan, P. R. China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Guangming Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Yi Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Xudong Xiao
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Jin Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China.
| |
Collapse
|
27
|
Lee JE, Lee JY, Kim HR, Shin HY, Lin T, Jin DI. Proteomic Analysis of Bovine Pregnancy-specific Serum Proteins by 2D Fluorescence Difference Gel Electrophoresis. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:788-95. [PMID: 25925056 PMCID: PMC4412975 DOI: 10.5713/ajas.14.0790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/15/2014] [Accepted: 01/19/2015] [Indexed: 11/27/2022]
Abstract
Two dimensional-fluorescence difference gel electrophoresis (2D DIGE) is an emerging technique for comparative proteomics, which improves the reproducibility and reliability of differential protein expression analysis between samples. The purpose of this study was to investigate bovine pregnancy-specific proteins in the proteome between bovine pregnant and non-pregnant serum using DIGE technique. Serums of 2 pregnant Holstein dairy cattle at day 21 after artificial insemination and those of 2 non-pregnant were used in this study. The pre-electrophoretic labeling of pregnant and non-pregnant serum proteins were mixed with Cy3 and Cy5 fluorescent dyes, respectively, and an internal standard was labeled with Cy2. Labeled proteins with Cy2, Cy3, and Cy5 were separated together in a single gel, and then were detected by fluorescence image analyzer. The 2D DIGE method using fluorescence CyDye DIGE flour had higher sensitivity than conventional 2D gel electrophoresis, and showed reproducible results. Approximately 1,500 protein spots were detected by 2D DIGE. Several proteins showed a more than 1.5-fold up and down regulation between non-pregnant and pregnant serum proteins. The differentially expressed proteins were identified by MALDI-TOF mass spectrometer. A total 16 protein spots were detected to regulate differentially in the pregnant serum, among which 7 spots were up-regulated proteins such as conglutinin precursor, modified bovine fibrinogen and IgG1, and 6 spots were down-regulated proteins such as hemoglobin, complement component 3, bovine fibrinogen and IgG2a three spots were not identified. The identified proteins demonstrate that early pregnant bovine serum may have several pregnancy-specific proteins, and these could be a valuable information for the development of pregnancy-diagnostic markers in early pregnancy bovine serum.
Collapse
Affiliation(s)
- Jae Eun Lee
- Department of Animal Science, Chungnam National University, Daejeon 305-764, Korea
| | - Jae Young Lee
- Department of Animal Science, Chungnam National University, Daejeon 305-764, Korea
| | - Hong Rye Kim
- Department of Animal Science, Chungnam National University, Daejeon 305-764, Korea
| | - Hyun Young Shin
- Department of Animal Science, Chungnam National University, Daejeon 305-764, Korea
| | - Tao Lin
- Department of Animal Science, Chungnam National University, Daejeon 305-764, Korea
| | - Dong Il Jin
- Department of Animal Science, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|
28
|
Qu Y, Ma KN, Li XZ. Identification of differentially expressed proteins and validation of the changes of N-ethylmaleimide-sensitive factor in rats with focal cerebral ischemia after transection of the cervical sympathetic trunk. ACTA ACUST UNITED AC 2014; 34:801-807. [PMID: 25480573 DOI: 10.1007/s11596-014-1356-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/28/2014] [Indexed: 11/27/2022]
Abstract
Stellate ganglion blockade (SGB) protects patients from focal cerebral ischemic injury, and transection of the cervical sympathetic trunk (TCST) in a rat model can mimic SGB in humans. The purpose of this study was to investigate the mechanisms underlying the neuroprotective effects of TCST on neuronal damage in the hippocampus in a rat model of middle cerebral artery occlusion (MCAO) in an attempt to elucidate the neuroprotective effects of SGB. The modified method of Zea Longa was used to establish the permanent MCAO model. Male Wistar rats were randomly divided into three groups: sham-operated group, MCAO group, and TCST group. The animals in TCST group were sacrificed 48 h after TCST which was performed after the establishment of the MCAO model. Proteins were extracted from the ipsilateral hippocampus and analyzed by two-dimensional difference gel electrophoresis (2D-DIGE) and peptide mass fingerprinting (PMF). The levels of N-ethylmaleimide-sensitive factor (NSF) were measured as well. The results showed that 11 types of proteins were identified by 2D-DIGE. The expressions of eight proteins were changed both in the sham-operated and TCST groups, and the expressions of the other three proteins were changed in all three groups. Moreover, the expression of NSF was higher in the TCST group than in the MCAO group but lower in the MCAO group than in sham-operated group. The ratio of NSF expression between the MCAO group and shamoperated group was -1.37 (P<0.05), whereas that between the TCST group and MCAO group was 1.35 (P<0.05). Our results imply that TCST increases the expression of NSF in the hippocampus of adult rats with focal cerebral ischemia, which may contribute to the protection of the injured brain. Our study provides a theoretical basis for the therapeutic application of SGB to patients with permanent cerebral ischemia.
Collapse
Affiliation(s)
- Yao Qu
- Department of Pain Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Ke-Ning Ma
- Department of Pain Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xing-Zhi Li
- Department of Pain Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
29
|
Song S, Chen D, Ma T, Luo Y, Yang Z, Wang D, Fan X, Qin Q, Ni B, Guo X, Xian Z, Lan P, Cao X, Li M, Wang J, Wang L. Molecular mechanism of acute radiation enteritis revealed using proteomics and biological signaling network analysis in rats. Dig Dis Sci 2014; 59:2704-13. [PMID: 24927798 DOI: 10.1007/s10620-014-3224-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/21/2014] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Radiation enteritis (RE) has emerged as a significant complication that can progress to severe gastrointestinal disease and the mechanisms underlying its genesis remain poorly understood. The aim of this study was to identify temporal changes in protein expression potentially associated with acute inflammation and to elucidate the mechanism underlying radiation enteritis genesis. METHODS Male Sprague-Dawley rats were irradiated in the abdomen with a single dose of 10 Gy to establish an in vivo model of acute radiation enteritis. Two-dimensional fluorescence difference gel electrophoresis, matrix-assisted laser desorption/ionization time-of-flight spectrometer (MALDI-TOF) tandem mass spectrometry, and peptide mass fingerprinting were used to determine differentially expressed proteins between normal and inflamed intestinal mucosa. Additionally, differentially expressed proteins were evaluated by KO Based Annotation System to find the biological functions associated with acute radiation enteritis. RESULTS Intensity changes of 86 spots were detected with statistical significance (ratio ≥ 1.5 or ≤ 1.5, P < 0.05). Sixty one of the 86 spots were identified by MALDI-TOF/TOF tandem mass spectrometry. These radiation-induced proteins with biological functions showed that the FAS pathway and glycolysis signaling pathways were significantly altered using the KOBAS tool. CONCLUSIONS Our results reveal an underlying mechanism of radiation-induced acute enteritis, which may help clarify the pathogenesis of RE and point to potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Shunxin Song
- Gastrointestinal Institute of Sun Yat-Sen University, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancunerheng Road, Guangzhou, 510655, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Uemura N, Kondo T. Current advances in esophageal cancer proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:687-95. [PMID: 25233958 DOI: 10.1016/j.bbapap.2014.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022]
Abstract
We review the current status of proteomics for esophageal cancer (EC) from a clinician's viewpoint. The ultimate goal of cancer proteomics is the improvement of clinical outcome. The proteome as a functional translation of the genome is a straightforward representation of genomic mechanisms that trigger carcinogenesis. Cancer proteomics has identified the mechanisms of carcinogenesis and tumor progression, detected biomarker candidates for early diagnosis, and provided novel therapeutic targets for personalized treatments. Our review focuses on three major topics in EC proteomics: diagnostics, treatment, and molecular mechanisms. We discuss the major histological differences between EC types, i.e., esophageal squamous cell carcinoma and adenocarcinoma, and evaluate the clinical significance of published proteomics studies, including promising diagnostic biomarkers and novel therapeutic targets, which should be further validated prior to launching clinical trials. Multi-disciplinary collaborations between basic scientists, clinicians, and pathologists should be established for inter-institutional validation. In conclusion, EC proteomics has provided significant results, which after thorough validation, should lead to the development of novel clinical tools and improvement of the clinical outcome for esophageal cancer patients. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Norihisa Uemura
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, 1-1 Kanokoden, chikusa-ku, Nagoya, Aichi 464-8681, Japan.
| | - Tadashi Kondo
- Division of Pharmacoproteomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
31
|
Longuespée R, Fléron M, Pottier C, Quesada-Calvo F, Meuwis MA, Baiwir D, Smargiasso N, Mazzucchelli G, De Pauw-Gillet MC, Delvenne P, De Pauw E. Tissue Proteomics for the Next Decade? Towards a Molecular Dimension in Histology. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:539-52. [DOI: 10.1089/omi.2014.0033] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rémi Longuespée
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | - Maximilien Fléron
- Mammalian Cell Culture Laboratory, GIGA-Research, Department of Biomedical and Preclinical Sciences, University of Liège, Liège, Belgium
| | - Charles Pottier
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Florence Quesada-Calvo
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, University of Liège, Liège, Belgium
| | - Marie-Alice Meuwis
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, University of Liège, Liège, Belgium
| | - Dominique Baiwir
- GIGA-R, GIGA Proteomic Facilities, University of Liège, Liège, Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | - Marie-Claire De Pauw-Gillet
- Mammalian Cell Culture Laboratory, GIGA-Research, Department of Biomedical and Preclinical Sciences, University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| |
Collapse
|
32
|
Yu D, Shin HS, Choi G, Lee YC. Proteomic analysis of CD44(+) and CD44(−) gastric cancer cells. Mol Cell Biochem 2014; 396:213-20. [DOI: 10.1007/s11010-014-2156-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/14/2014] [Indexed: 11/28/2022]
|
33
|
Lilley KS, Friedman DB. Difference gel electrophoresis DIGE. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 3:347-53. [PMID: 24980539 DOI: 10.1016/j.ddtec.2006.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteomics offers powerful technologies to assist in the discovery of targets for novel therapeutic agents, by allowing the investigation of changes in protein state between control and diseased tissue and biofluids. Difference gel electrophoresis coupled with mass spectrometry (DIGE/MS) is a technology used within proteomics that has demonstrated technical robustness and associated statistical confidence to enable successful identification of therapeutic targets.:
Collapse
Affiliation(s)
- Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, UK CB2 1QW.
| | - David B Friedman
- Proteomics Laboratory, Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-8575, USA.
| |
Collapse
|
34
|
Alaiya A, Assad L, Alkhafaji D, Shinwari Z, Almana H, Shoukri M, Alkorbi L, Ibrahim HG, Abdelsalam MS, Skolnik E, Adra C, Albaqumi M. Proteomic analysis of Class IV lupus nephritis. Nephrol Dial Transplant 2014; 30:62-70. [PMID: 24914093 DOI: 10.1093/ndt/gfu215] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND There have been several attempts to standardize the definition and increase reproducibility in classifying lupus nephritis (LN). The last was made by the International Society of Nephrology and Renal Pathology Society in 2003 where the introduction of Class IV subcategories (global and segmental) was introduced. METHODS We investigated whether this subdivision is important using a proteomics approach. All patients with renal biopsies along with their clinical outcome of LN were identified and regrouped according to the above 2003 classifications. Fresh-frozen renal biopsies of Class IV LN (global and segmental), antineutrophil cytoplasmic antibody-associated vasculitis and normal tissue were analyzed using two-dimensional gel electrophoresis (2-DE) and mass spectrometry. Differentially expressed proteins were identified and subjected to principal component analysis (PCA), and post hoc analysis for the four sample groups. RESULTS PCA of 72 differentially expressed spots separated Class IV global and Class IV segmental from both normal and antineutrophil cytoplasmic antibody-associated vasculitis (ANCA). The 28 identified proteins were used in a post hoc analysis, and showed that IV-global and IV-segmental differ in several protein expression when compared with normal and ANCA. To confirm the proteomic results, a total of 78 patients (50 Class IV-Global and 28 Class IV-Segmental) were re-classified according to 2003 classification. There was no difference in therapy between the groups. The renal survival and patient survivals were similar in both groups. CONCLUSIONS There is no strong evidence to support a different outcome between the two subcategories of Class-IV LN and, they should thus be treated the same until further studies indicate otherwise.
Collapse
Affiliation(s)
- Ayodele Alaiya
- Proteomics Unit, Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lina Assad
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dania Alkhafaji
- Nephrology Section, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zakia Shinwari
- Proteomics Unit, Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hadeel Almana
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohamed Shoukri
- Department of Biostatistics and Epidemiology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lutfi Alkorbi
- Nephrology Section, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hossamaldin Galal Ibrahim
- Nephrology Section, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohamed Said Abdelsalam
- Nephrology Section, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia Internal Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Edward Skolnik
- Nephrology Division, Department of Medicine, New York University Medical Center, NY, USA
| | - Chaker Adra
- Proteomics Unit, Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia Transplantation Research Center, Renal Division, Children's Hospital Boston and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mamdouh Albaqumi
- Proteomics Unit, Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia Nephrology Section, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia Nephrology Division, Department of Medicine, New York University Medical Center, NY, USA Nephrology Section, Department of Medicine, MBC-46, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Zhang P, Yamamoto K, Wang Y, Banno Y, Fujii H, Miake F, Kashige N, Aso Y. Utility of Dry Gel from Two-dimensional Electrophoresis for Peptide Mass Fingerprinting Analysis of Silkworm Proteins. Biosci Biotechnol Biochem 2014; 68:2148-54. [PMID: 15502361 DOI: 10.1271/bbb.68.2148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We compared the use of wet and dry two-dimensional electrophoresis (2-DE) gels for in-gel tryptic digestion and subsequent analysis by mass spectrometry, first using bovine serum albumin (BSA) as a model protein and then using unknown proteins from an extract of the silkworm midgut. The gel was either dried at 80 degrees C or left wet. Upon analysis of BSA, there was little difference in peptide recovery from 2-DE or in mass spectrum between the dry and the wet gels. The midgut extract was resolved into more than 1,100 protein spots by 2-DE, and 40 of these spots were sampled for further analysis. For all of the 40 proteins, the results obtained from dry and wet gels were quite similar in mass spectra and protein identification, although the relative amounts of peptides from tryptic digestion ranged from 45 to 146%. Based on these results, we confirmed the utility of dry electrophoretic gels for proteomics of insect extracts.
Collapse
Affiliation(s)
- Pingbo Zhang
- Laboratory of Insect Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
A mass spectrometry-based workflow for the proteomic analysis of in vitro cultured cell subsets isolated by means of laser capture microdissection. Anal Bioanal Chem 2014; 406:2817-25. [PMID: 24633565 DOI: 10.1007/s00216-014-7724-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/19/2013] [Accepted: 02/24/2014] [Indexed: 01/18/2023]
Abstract
This paper describes a microproteomic workflow that is useful for simultaneously identifying and quantifying proteins from a minimal number of morphotypically heterogeneous cultured adherent cells. The analytical strategy makes use of laser capture microdissection, an effective means of harvesting pure cell populations, and label-free mass spectrometry. We optimised the workflow with particular reference to cell fixation which is crucial for successful laser-based microdissection and also downstream molecular studies. In addition, we defined the minimum number of cells to be isolated and analysed for satisfactory proteome coverage. To set up this workflow, we choose human monocyte-derived macrophages spontaneously differentiated in vitro. These cells, under our culture conditions, show distinct morphotypes, reminiscent of the heterogeneity observed in tissues in various homeostatic and pathological states, e.g. atherosclerosis. This optimised workflow may provide new insights into biology and pathology of heterogeneous cell in culture, particularly when other cell selection approaches are not suitable.
Collapse
|
37
|
Damante G, Scaloni A, Tell G. Thyroid tumors: novel insights from proteomic studies. Expert Rev Proteomics 2014; 6:363-76. [DOI: 10.1586/epr.09.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Wheelock AM, Goto S. Effects of post-electrophoretic analysis on variance in gel-based proteomics. Expert Rev Proteomics 2014; 3:129-42. [PMID: 16445357 DOI: 10.1586/14789450.3.1.129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
2D electrophoresis (2DE) is a prominent separation method for complex proteomes. Although recent advances have increased the utility of this method in quantitative proteomics studies, many sources of variance still exist. This review discusses the post-electrophoretic sources of variance in current 2DE analysis. The essential improvements in protein visualization and software algorithms that have made 2DE a leading quantitative proteomics method are briefly reviewed. A number of shortcomings in the post-electrophoretic analysis of 2DE data that require further attention are highlighted. Topics discussed include protein visualization and image acquisition, internal standards and normalization methods, background subtraction algorithms, normality of distribution, and the need for standardized tests for the evaluation of 2DE analysis software packages.
Collapse
Affiliation(s)
- Asa M Wheelock
- Kyoto University, Bioinformatics Center, Institute for Chemical Research, Uji, Kyoto, 611-0011, Japan.
| | | |
Collapse
|
39
|
Van den Bergh G, Arckens L. Recent advances in 2D electrophoresis: an array of possibilities. Expert Rev Proteomics 2014; 2:243-52. [PMID: 15892568 DOI: 10.1586/14789450.2.2.243] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
2D electrophoresis is currently the most widespread technique used for performing functional proteomics (i.e., the large-scale analysis of alterations in protein expression levels). Nevertheless, several limitations inherent to this technology have restricted the full potential of this protein differential display methodology for years. This has even led to the abandonment of 2D electrophoresis by several groups that switched to performing gel-free functional proteomics analyses based on liquid chromatography and mass spectrometry. Meanwhile, important recent advances in 2D electrophoresis, such as the introduction of fluorescent 2D difference gel electrophoresis and numerous protein prefractionation techniques, have thoroughly modernized 2D electrophoresis, making it again one of the preferred methods for the analysis of protein expression differences in many laboratories.
Collapse
Affiliation(s)
- Gert Van den Bergh
- Katholieke Universiteit Leuven, Laboratory of Neuroplasticity & Neuroproteomics, Department of Biology, Belgium.
| | | |
Collapse
|
40
|
Abstract
The cornerstone of proteomics resides in using traditional methods of protein chemistry, to extract and resolve complex mixtures, in concert with the powerful engines of mass spectrometry to decipher peptide and protein identities. The broad utility of proteomics technologies to map protein interactions, understand regulatory mechanisms and identify biomarkers associated with disease states and drug treatments necessitates a targeted biochemical approach tailored to the characteristics of the tissue, fluid or cellular extract being studied. The application of affinity methods in proteomic studies to focus on particular classes of molecules is being used with increasing frequency and comprises the subject of this review. An overview of successfully applied affinity methods is provided, along with speculation on the use of innovative approaches. Sample preparation and processing are critical for proteomics with affinity reagents, as only functional and active proteins can be isolated in most cases. Considerations for methods of sample preparation to optimize affinity capture and release are also discussed.
Collapse
Affiliation(s)
- Gregory J Opiteck
- Clinical Discovery Technologies, Bristol-Myers Squibb, PO Box 5400, Princeton, NJ 08543-5400, USA.
| | | |
Collapse
|
41
|
Mocan L, Ilie I, Tabaran FA, Dana B, Zaharie F, Zdrehus C, Puia C, Mocan T, Muntean V, Teodora P, Ofelia M, Marcel T, Iancu C. Surface plasmon resonance-induced photoactivation of gold nanoparticles as mitochondria-targeted therapeutic agents for pancreatic cancer. Expert Opin Ther Targets 2013; 17:1383-93. [PMID: 24188208 DOI: 10.1517/14728222.2013.855200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Noble metal nanoparticles such as gold nanoparticles can strongly absorb light in the visible region by inducing coherent collective oscillation of conduction band electrons in strong resonance with visible frequencies of light. This phenomenon is frequently termed as surface plasmon resonance (SPR). OBJECTIVES The main objective was to study the effects of laser photoactivated gold nanoparticles (by means of SPR) on human pancreatic cancer cells. RESULTS Gold nanoparticles obtained using standard wet chemical methods (with sodium borohydride as a reducing agent) underwent photoexcitation using 2w 808 nm laser and further administered to 1.4E7 pancreatic cancer cell lines. Flow cytometry, transmission electron microscopy, phase contrast microscopy, quantitative proteomics and confocal microscopy combined with immunochemical staining were used to examine the interaction between photo excited gold nanoparticles and pancreatic cancer cells. CONCLUSION The study shows that phonon-phonon interactions following laser photoexcitation of gold nanoparticles exhibit increased intracellular uptake, as well as mitochondrial swelling, closely followed by mitochondrial inner membrane permeabilization and depolarization. This unique data may represent a major step in mitochondria-targeted anticancer therapies using laser-activated gold nanoparticles.
Collapse
Affiliation(s)
- Lucian Mocan
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology, Department of Nanomedicine , Croitorilor Street, Cluj-Napoca , Romania , +40264-439696 ; +40264-439696 ;
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Amunugama R, Jones R, Ford M, Allen D. Bottom-Up Mass Spectrometry-Based Proteomics as an Investigative Analytical Tool for Discovery and Quantification of Proteins in Biological Samples. Adv Wound Care (New Rochelle) 2013; 2:549-557. [PMID: 24761338 DOI: 10.1089/wound.2012.0384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/19/2013] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE The objective of this overview is to introduce bottom-up mass spectrometry (MS)-based proteomics approaches and strategies, widely used in other biomedical research fields, to the wound-healing research community. APPROACHES TWO MAJOR PROTEOMICS WORKFLOWS ARE DISCUSSED: gel-based and gel-free chromatographic separation to reduce the complexity of the sample at protein and peptide level, respectively, prior to nano-liquid chromatography-tandem mass spectrometry analysis. Other strategies to discover less abundant proteins present in the sample, are also briefly discussed along with label-free and label-incorporated methods for protein quantification. Overall, the experimental workflows are designed and continually improved to increase the number of proteins identifiable and quantifiable. DISCUSSION Recent advances and improvements in all areas of proteomics workflow from sample preparation, to acquisition of massive amounts of data, to bioinformatics analysis have made this technology an indispensable tool for in-depth large-scale characterization of complex proteomes. This technology has been successfully applied in studies focusing on biomarker discovery, differential protein expression, protein-protein interactions, and post-translational modifications in complex biological samples such as cerebrospinal fluid, serum and plasma, and urine from patients. The publications from these studies have reported greater number of identified proteins, novel biomarker candidates, and post-translational modifications previously unknown. CONCLUSIONS The qualitative and quantitative protein analysis of the protein population of wound tissues or fluids at different stages is important in wound healing research. Given the complexities and analytical challenges of these samples, MS-based proteomic workflows further improved with recent advances offer a powerful and attractive technology for this purpose.
Collapse
|
43
|
Abstract
The annexins are a well-known, closely related, multigene superfamily of Ca2+-regulated, phospholipid-dependent, membrane-binding proteins. As a member of the annexins, Anxa1 participates in a variety of important biological processes, such as cellular transduction, membrane aggregation, inflammation, phagocytosis, proliferation, differentiation and apoptosis. Accumulated evidence has indicated that Anxa1 deregulations are associated with the development, invasion, metastasis, occurrence and drug resistance of cancers. The research evidence in recent years indicates that Anxa1 might specifically function either as a tumor suppressor or a tumor promoter candidate for certain cancers depending on the particular type of tumor cells/tissues. This article summarizes the associations between Anxa1 and malignant tumors, as well as potential action mechanisms. Anxa1 has the potential to be used in the future as a biomarker for the diagnosis, treatment and prognosis of certain tumors.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
44
|
Age-related changes in the mitochondrial proteome of the fungus Podospora anserina analyzed by 2D-DIGE and LC-MS/MS. J Proteomics 2013; 91:358-74. [PMID: 23872087 DOI: 10.1016/j.jprot.2013.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/18/2013] [Accepted: 07/08/2013] [Indexed: 12/28/2022]
Abstract
UNLABELLED Many questions concerning the molecular processes during biological aging remain unanswered. Since mitochondria are central players in aging, we applied quantitative two-dimensional difference gel electrophoresis (2D-DIGE) coupled to protein identification by mass spectrometry to study the age-dependent changes in the mitochondrial proteome of the fungus Podospora anserina - a well-established aging model. 67 gel spots exhibited significant, but remarkably moderate intensity changes. While typically the observed changes in protein abundance occurred progressively with age, for several proteins a pronounced change was observed at late age, sometimes inverting the trend observed at younger age. The identified proteins were assigned to a wide range of metabolic pathways including several implicated previously in biological aging. An overall decrease for subunits of complexes I and V of oxidative phosphorylation was confirmed by Western blot analysis and blue-native electrophoresis. Changes in several groups of proteins suggested a general increase in protein biosynthesis possibly reflecting a compensatory mechanism for increased quality control-related protein degradation at later age. Age-related augmentation in abundance of proteins involved in biosynthesis, folding, and protein degradation pathways sustain these observations. Furthermore, a significant decrease of two enzymes involved in the degradation of γ-aminobutyrate (GABA) supported its previously suggested involvement in biological aging. BIOLOGICAL SIGNIFICANCE We have followed the time course of changes in protein abundance during aging of the fungus P. anserina. The observed moderate but significant changes provide insight into the molecular adaptations to biological aging and highlight the metabolic pathways involved, thereby offering new leads for future research.
Collapse
|
45
|
Niederberger E, Geisslinger G. Proteomics and NF-κB: an update. Expert Rev Proteomics 2013; 10:189-204. [PMID: 23573785 DOI: 10.1586/epr.13.5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transcription factor NF-κB was discovered in 1986 and since then has been extensively studied in relation to cancer research and inflammatory or autoimmune diseases due to its important roles in the regulation of apoptosis and inflammation as well as innate and adaptive immunity. Although much is known about NF-κB signaling, novel NF-κB functions in different diseases are still being uncovered, together with its target proteins, interaction partners and regulators of its activation cascade. Proteomic approaches are particularly suited to the discovery of new proteins involved in distinct signal transduction cascades. This review provides an update on and extension of a recent review that summarized a number of proteomic approaches to NF-κB signaling. The studies discussed here utilized innovative techniques and offer several new hypotheses on the role of NF-κB in physiological and pathophysiological processes, which open new avenues for research on NF-κB in the future.
Collapse
Affiliation(s)
- Ellen Niederberger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | | |
Collapse
|
46
|
Epstein MG, Reeves BD, Maaty WS, Fouchard D, Dratz EA, Bothner B, Grieco PA. Enhanced Sensitivity Employing Zwitterionic and pI Balancing Dyes (Z-CyDyes) Optimized for 2D-Gel Electrophoresis Based on Side Chain Modifications of CyDye Fluorophores. New Tools For Use in Proteomics and Diagnostics. Bioconjug Chem 2013; 24:1552-61. [DOI: 10.1021/bc4002213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark G. Epstein
- Department of Chemistry and Biochemistry, Montana State University, PO Box 173400, Bozeman, Montana
59717-3400, United States
| | - Benjamin D. Reeves
- Department of Chemistry and Biochemistry, Montana State University, PO Box 173400, Bozeman, Montana
59717-3400, United States
| | - Walid S. Maaty
- Department of Chemistry and Biochemistry, Montana State University, PO Box 173400, Bozeman, Montana
59717-3400, United States
| | - David Fouchard
- Department of Chemistry and Biochemistry, Montana State University, PO Box 173400, Bozeman, Montana
59717-3400, United States
| | - Edward A. Dratz
- Department of Chemistry and Biochemistry, Montana State University, PO Box 173400, Bozeman, Montana
59717-3400, United States
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, PO Box 173400, Bozeman, Montana
59717-3400, United States
| | - Paul A. Grieco
- Department of Chemistry and Biochemistry, Montana State University, PO Box 173400, Bozeman, Montana
59717-3400, United States
| |
Collapse
|
47
|
Lokamani I, Looi ML, Md Ali SA, Mohd Dali AZH, Ahmad Annuar MA, Jamal R. Gelsolin and ceruloplasmin as potential predictive biomarkers for cervical cancer by 2D-DIGE proteomics analysis. Pathol Oncol Res 2013; 20:119-29. [PMID: 23925487 DOI: 10.1007/s12253-013-9670-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/26/2013] [Indexed: 12/18/2022]
Abstract
This study aimed to identify candidate proteins which may serve as potential biological markers for cervical cancer using 2D-DIGE. Serum samples of controls, patients with cervical intraepithelial neoplasia grade 3 (CIN 3), squamous cell carcinoma of early (SCC I and II) and late (SCC III and IV) stage were subjected to 2D-DIGE. Differentially expressed spots were identified by tandem mass spectrometry. Validation of candidate proteins in serum and tissue samples were then performed by ELISA and immunohistochemistry (IHC) analysis respectively. A total of 20 differentially expressed proteins were identified. These proteins were found to play key roles in the apoptosis pathway, complement system, various types of transportation such as hormones, fatty acids, lipid, vitamin E and drug transportation, coagulation cascade, regulation of iron and immunologic response. Based on their functional relevancy to the progression of various cancers, 4 proteins namely the complement factor H, CD5-like antigen, gelsolin and ceruloplasmin were chosen for further validation using ELISA. Biological network analysis showed that ceruloplasmin and gelsolin are closely interacted with the oncogene NF-κb. These two proteins were further validated using the IHC. Gelsolin and ceruloplasmin may serve as potential predictive biomarkers for the progression of high grade lesions.
Collapse
Affiliation(s)
- Ilambarthi Lokamani
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Level 7, Clinical Block, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
48
|
Skaggs HS, Saunders BA, Miller RW, Goodrich ST, King MS, Kimbler KD, Branscum AJ, Fung ET, DePriest PD, van Nagell JR, Ueland FR, Baron AT. Ovarian Cyst Fluids Are a Cache of Tumor Biomarkers That Include Calgranulin A and Calgranulin B Isoforms. Cancer Invest 2013; 31:433-53. [DOI: 10.3109/07357907.2013.802799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Koprowski R, Wróbel Z, Korzyńska A, Chwiałkowska K, Kwaśniewski M. Automatic analysis of 2D polyacrylamide gels in the diagnosis of DNA polymorphisms. Biomed Eng Online 2013; 12:68. [PMID: 23835039 PMCID: PMC3718704 DOI: 10.1186/1475-925x-12-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/25/2013] [Indexed: 11/23/2022] Open
Abstract
Introduction The analysis of polyacrylamide gels is currently carried out manually or automatically. In the automatic method, there are limitations related to the acceptable degree of distortion of lane and band continuity. The available software cannot deal satisfactorily with this type of situations. Therefore, the paper presents an original image analysis method devoid of the aforementioned drawbacks. Material This paper examines polyacrylamide gel images from Li-Cor DNA Sequencer 4300S resulting from the use of the electrophoretic separation of DNA fragments. The acquired images have a resolution dependent on the length of the analysed DNA fragments and typically it is MG×NG=3806×1027 pixels. The images are saved in TIFF format with a grayscale resolution of 16 bits/pixel. The presented image analysis method was performed on gel images resulting from the analysis of DNA methylome profiling in plants exposed to drought stress, carried out with the MSAP (Methylation Sensitive Amplification Polymorphism) technique. Results The results of DNA polymorphism analysis were obtained in less than one second for the Intel Core™ 2 Quad CPU Q9300@2.5GHz, 8GB RAM. In comparison with other known methods, specificity was 0.95, sensitivity = 0.94 and AUC (Area Under Curve) = 0.98. Conclusions It is possible to carry out this method of DNA polymorphism analysis on distorted images of polyacrylamide gels. The method is fully automatic and does not require any operator intervention. Compared with other methods, it produces the best results and the resulting image is easy to interpret. The presented method of measurement is used in the practical analysis of polyacrylamide gels in the Department of Genetics at the University of Silesia in Katowice, Poland.
Collapse
Affiliation(s)
- Robert Koprowski
- Department of Biomedical Computer Systems, Institute of Computer Science, University of Silesia, Będzińska 39, 41-200, Sosnowiec, Poland.
| | | | | | | | | |
Collapse
|
50
|
Savaryn JP, Catherman AD, Thomas PM, Abecassis MM, Kelleher NL. The emergence of top-down proteomics in clinical research. Genome Med 2013; 5:53. [PMID: 23806018 PMCID: PMC3707033 DOI: 10.1186/gm457] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proteomic technology has advanced steadily since the development of 'soft-ionization' techniques for mass-spectrometry-based molecular identification more than two decades ago. Now, the large-scale analysis of proteins (proteomics) is a mainstay of biological research and clinical translation, with researchers seeking molecular diagnostics, as well as protein-based markers for personalized medicine. Proteomic strategies using the protease trypsin (known as bottom-up proteomics) were the first to be developed and optimized and form the dominant approach at present. However, researchers are now beginning to understand the limitations of bottom-up techniques, namely the inability to characterize and quantify intact protein molecules from a complex mixture of digested peptides. To overcome these limitations, several laboratories are taking a whole-protein-based approach, in which intact protein molecules are the analytical targets for characterization and quantification. We discuss these top-down techniques and how they have been applied to clinical research and are likely to be applied in the near future. Given the recent improvements in mass-spectrometry-based proteomics and stronger cooperation between researchers, clinicians and statisticians, both peptide-based (bottom-up) strategies and whole-protein-based (top-down) strategies are set to complement each other and help researchers and clinicians better understand and detect complex disease phenotypes.
Collapse
Affiliation(s)
- John P Savaryn
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence, 2145 N. Sheridan Dr, Evanston, IL 60208, USA
| | - Adam D Catherman
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence, 2145 N. Sheridan Dr, Evanston, IL 60208, USA
| | - Paul M Thomas
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence, 2145 N. Sheridan Dr, Evanston, IL 60208, USA
| | | | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence, 2145 N. Sheridan Dr, Evanston, IL 60208, USA ; The Robert H Lurie Comprehensive Cancer Center, 303 E. Superior, Chicago, IL 60611, USA
| |
Collapse
|