1
|
Puig S, Xue X, Salisbury R, Shelton MA, Kim SM, Hildebrand MA, Glausier JR, Freyberg Z, Tseng GC, Yocum AK, Lewis DA, Seney ML, MacDonald ML, Logan RW. Circadian rhythm disruptions associated with opioid use disorder in synaptic proteomes of human dorsolateral prefrontal cortex and nucleus accumbens. Mol Psychiatry 2023; 28:4777-4792. [PMID: 37674018 PMCID: PMC10914630 DOI: 10.1038/s41380-023-02241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24-h cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes associated with vesicle-mediated transport and membrane trafficking in the NAc and platelet-derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.
Collapse
Affiliation(s)
- Stephanie Puig
- Department of Pharmacology, Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Micah A Shelton
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sam-Moon Kim
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mariah A Hildebrand
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Ryan W Logan
- Department of Pharmacology, Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA.
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Lorenz-Guertin JM, Povysheva N, Chapman CA, MacDonald ML, Fazzari M, Nigam A, Nuwer JL, Das S, Brady ML, Vajn K, Bambino MJ, Weintraub ST, Johnson JW, Jacob TC. Inhibitory and excitatory synaptic neuroadaptations in the diazepam tolerant brain. Neurobiol Dis 2023; 185:106248. [PMID: 37536384 PMCID: PMC10578451 DOI: 10.1016/j.nbd.2023.106248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Benzodiazepine (BZ) drugs treat seizures, anxiety, insomnia, and alcohol withdrawal by potentiating γ2 subunit containing GABA type A receptors (GABAARs). BZ clinical use is hampered by tolerance and withdrawal symptoms including heightened seizure susceptibility, panic, and sleep disturbances. Here, we investigated inhibitory GABAergic and excitatory glutamatergic plasticity in mice tolerant to benzodiazepine sedation. Repeated diazepam (DZP) treatment diminished sedative effects and decreased DZP potentiation of GABAAR synaptic currents without impacting overall synaptic inhibition. While DZP did not alter γ2-GABAAR subunit composition, there was a redistribution of extrasynaptic GABAARs to synapses, resulting in higher levels of synaptic BZ-insensitive α4-containing GABAARs and a concomitant reduction in tonic inhibition. Conversely, excitatory glutamatergic synaptic transmission was increased, and NMDAR subunits were upregulated at synaptic and total protein levels. Quantitative proteomics further revealed cortex neuroadaptations of key pro-excitatory mediators and synaptic plasticity pathways highlighted by Ca2+/calmodulin-dependent protein kinase II (CAMKII), MAPK, and PKC signaling. Thus, reduced inhibitory GABAergic tone and elevated glutamatergic neurotransmission contribute to disrupted excitation/inhibition balance and reduced BZ therapeutic power with benzodiazepine tolerance.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya Povysheva
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlyn A Chapman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aparna Nigam
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sabyasachi Das
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Megan L Brady
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katarina Vajn
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew J Bambino
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antoni, TX, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Puig S, Xue X, Salisbury R, Shelton MA, Kim SM, Hildebrand MA, Glausier JR, Freyberg Z, Tseng GC, Yocum AK, Lewis DA, Seney ML, MacDonald ML, Logan RW. Circadian rhythm disruptions associated with opioid use disorder in the synaptic proteomes of the human dorsolateral prefrontal cortex and nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536056. [PMID: 37066169 PMCID: PMC10104116 DOI: 10.1101/2023.04.07.536056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24- hour cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes related to vesicle-mediated transport and membrane trafficking in the NAc and platelet derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.
Collapse
|
4
|
Krivinko JM, DeChellis-Marks MR, Zeng L, Fan P, Lopez OL, Ding Y, Wang L, Kofler J, MacDonald ML, Sweet RA. Targeting the post-synaptic proteome has therapeutic potential for psychosis in Alzheimer Disease. Commun Biol 2023; 6:598. [PMID: 37268664 PMCID: PMC10238472 DOI: 10.1038/s42003-023-04961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
Individuals with Alzheimer Disease who develop psychotic symptoms (AD + P) experience more rapid cognitive decline and have reduced indices of synaptic integrity relative to those without psychosis (AD-P). We sought to determine whether the postsynaptic density (PSD) proteome is altered in AD + P relative to AD-P, analyzing PSDs from dorsolateral prefrontal cortex of AD + P, AD-P, and a reference group of cognitively normal elderly subjects. The PSD proteome of AD + P showed a global shift towards lower levels of all proteins relative to AD-P, enriched for kinases, proteins regulating Rho GTPases, and other regulators of the actin cytoskeleton. We computationally identified potential novel therapies predicted to reverse the PSD protein signature of AD + P. Five days of administration of one of these drugs, the C-C Motif Chemokine Receptor 5 inhibitor, maraviroc, led to a net reversal of the PSD protein signature in adult mice, nominating it as a novel potential treatment for AD + P.
Collapse
Affiliation(s)
- J M Krivinko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M R DeChellis-Marks
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - L Zeng
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - P Fan
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - O L Lopez
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Y Ding
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - L Wang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - J Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R A Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Krivinko JM, Erickson SL, MacDonald ML, Garver ME, Sweet RA. Fingolimod mitigates synaptic deficits and psychosis-like behavior in APP/PSEN1 mice. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12324. [PMID: 36016832 PMCID: PMC9395154 DOI: 10.1002/trc2.12324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 04/18/2023]
Abstract
Introduction Current treatments for psychosis in Alzheimer's disease (AD), a syndrome characterized by more rapid deterioration and reduced synaptic protein abundance relative to non-psychotic AD, are inadequate. Fingolimod, a currently US Food and Drug Administration (FDA)-approved pharmacotherapy for multiple sclerosis, alters synaptic protein expression and warrants preclinical appraisal as a candidate pharmacotherapy for psychosis in AD. Methods Presenilin and amyloid precursor protein transgenic mice (APPswe/PSEN1dE9) and wild-type mice were randomized to fingolimod or saline for 7 days. Psychosis-associated behaviors were quantified by open field testing, pre-pulse inhibition of the acoustic startle response testing, and habituation of the acoustic startle response testing. Synaptic proteins were quantified by liquid chromatography/mass spectrometry in homogenate and postsynaptic density fractions. Results Fingolimod treatment increased the synaptic protein abundance in cortical homogenates and normalized psychosis-associated behaviors in APPswe/PSEN1dE9 mice relative to saline. Mitochondrial-related proteins were preferentially altered by fingolimod treatment and correlated with improvements in psychosis-associated behaviors. Discussion Preclinical studies employing complementary psychosis-associated behavioral assessments and proteomic evaluations across multiple AD-related models are warranted to replicate the current study and further investigate fingolimod as a candidate treatment for psychosis in AD.
Collapse
Affiliation(s)
- Josh M. Krivinko
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Susan L. Erickson
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Matthew L. MacDonald
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Megan E. Garver
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Robert A. Sweet
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
6
|
Grubisha MJ, Sun X, MacDonald ML, Garver M, Sun Z, Paris KA, Patel DS, DeGiosio RA, Lewis DA, Yates NA, Camacho C, Homanics GE, Ding Y, Sweet RA. MAP2 is differentially phosphorylated in schizophrenia, altering its function. Mol Psychiatry 2021; 26:5371-5388. [PMID: 33526823 PMCID: PMC8325721 DOI: 10.1038/s41380-021-01034-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 01/30/2023]
Abstract
Schizophrenia (Sz) is a highly polygenic disorder, with common, rare, and structural variants each contributing only a small fraction of overall disease risk. Thus, there is a need to identify downstream points of convergence that can be targeted with therapeutics. Reduction of microtubule-associated protein 2 (MAP2) immunoreactivity (MAP2-IR) is present in individuals with Sz, despite no change in MAP2 protein levels. MAP2 is phosphorylated downstream of multiple receptors and kinases identified as Sz risk genes, altering its immunoreactivity and function. Using an unbiased phosphoproteomics approach, we quantified 18 MAP2 phosphopeptides, 9 of which were significantly altered in Sz subjects. Network analysis grouped MAP2 phosphopeptides into three modules, each with a distinct relationship to dendritic spine loss, synaptic protein levels, and clinical function in Sz subjects. We then investigated the most hyperphosphorylated site in Sz, phosphoserine1782 (pS1782). Computational modeling predicted phosphorylation of S1782 reduces binding of MAP2 to microtubules, which was confirmed experimentally. We generated a transgenic mouse containing a phosphomimetic mutation at S1782 (S1782E) and found reductions in basilar dendritic length and complexity along with reduced spine density. Because only a limited number of MAP2 interacting proteins have been previously identified, we combined co-immunoprecipitation with mass spectrometry to characterize the MAP2 interactome in mouse brain. The MAP2 interactome was enriched for proteins involved in protein translation. These associations were shown to be functional as overexpression of wild type and phosphomimetic MAP2 reduced protein synthesis in vitro. Finally, we found that Sz subjects with low MAP2-IR had reductions in the levels of synaptic proteins relative to nonpsychiatric control (NPC) subjects and to Sz subjects with normal and MAP2-IR, and this same pattern was recapitulated in S1782E mice. These findings suggest a new conceptual framework for Sz-that a large proportion of individuals have a "MAP2opathy"-in which MAP function is altered by phosphorylation, leading to impairments of neuronal structure, synaptic protein synthesis, and function.
Collapse
Affiliation(s)
- M J Grubisha
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - X Sun
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Tsinghua MD Program, School of Medicine, Tsinghua University, Beijing, China
| | - M L MacDonald
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Garver
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Z Sun
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - K A Paris
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D S Patel
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - R A DeGiosio
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - D A Lewis
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - N A Yates
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - C Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - G E Homanics
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - R A Sweet
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Dumrongprechachan V, Salisbury RB, Soto G, Kumar M, MacDonald ML, Kozorovitskiy Y. Cell-type and subcellular compartment-specific APEX2 proximity labeling reveals activity-dependent nuclear proteome dynamics in the striatum. Nat Commun 2021; 12:4855. [PMID: 34381044 PMCID: PMC8357913 DOI: 10.1038/s41467-021-25144-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
The vertebrate brain consists of diverse neuronal types, classified by distinct anatomy and function, along with divergent transcriptomes and proteomes. Defining the cell-type specific neuroproteomes is important for understanding the development and functional organization of neural circuits. This task remains challenging in complex tissue, due to suboptimal protein isolation techniques that often result in loss of cell-type specific information and incomplete capture of subcellular compartments. Here, we develop a genetically targeted proximity labeling approach to identify cell-type specific subcellular proteomes in the mouse brain, confirmed by imaging, electron microscopy, and mass spectrometry. We virally express subcellular-localized APEX2 to map the proteome of direct and indirect pathway spiny projection neurons in the striatum. The workflow provides sufficient depth to uncover changes in the proteome of striatal neurons following chemogenetic activation of Gαq-coupled signaling cascades. This method enables flexible, cell-type specific quantitative profiling of subcellular proteome snapshots in the mouse brain. Mapping neuronal proteomes with genetic, subcellular, and temporal specificity is a challenging task. This study uncovers proteome dynamics in two classes of striatal spiny projection neurons in the mouse brain using a genetically targeted APEX2-based proximity labeling approach.
Collapse
Affiliation(s)
- V Dumrongprechachan
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.,The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - R B Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.,Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - G Soto
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - M Kumar
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - M L MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA. .,Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Y Kozorovitskiy
- Department of Neurobiology, Northwestern University, Evanston, IL, USA. .,The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
8
|
Grubisha MJ, Sweet RA, MacDonald ML. Investigating Post-translational Modifications in Neuropsychiatric Disease: The Next Frontier in Human Post-mortem Brain Research. Front Mol Neurosci 2021; 14:689495. [PMID: 34335181 PMCID: PMC8322442 DOI: 10.3389/fnmol.2021.689495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022] Open
Abstract
Gene expression and translation have been extensively studied in human post-mortem brain tissue from subjects with psychiatric disease. Post-translational modifications (PTMs) have received less attention despite their implication by unbiased genetic studies and importance in regulating neuronal and circuit function. Here we review the rationale for studying PTMs in psychiatric disease, recent findings in human post-mortem tissue, the required controls for these types of studies, and highlight the emerging mass spectrometry approaches transforming this research direction.
Collapse
Affiliation(s)
- Melanie J. Grubisha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew L. MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Borgmann-Winter KE, Wang K, Bandyopadhyay S, Torshizi AD, Blair IA, Hahn CG. The proteome and its dynamics: A missing piece for integrative multi-omics in schizophrenia. Schizophr Res 2020; 217:148-161. [PMID: 31416743 PMCID: PMC7500806 DOI: 10.1016/j.schres.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023]
Abstract
The complex and heterogeneous pathophysiology of schizophrenia can be deconstructed by integration of large-scale datasets encompassing genes through behavioral phenotypes. Genome-wide datasets are now available for genetic, epigenetic and transcriptomic variations in schizophrenia, which are then analyzed by newly devised systems biology algorithms. A missing piece, however, is the inclusion of information on the proteome and its dynamics in schizophrenia. Proteomics has lagged behind omics of the genome, transcriptome and epigenome since analytic platforms were relatively less robust for proteins. There has been remarkable progress, however, in the instrumentation of liquid chromatography (LC) and mass spectrometry (MS) (LCMS), experimental paradigms and bioinformatics of the proteome. Here, we present a summary of methodological innovations of recent years in MS based proteomics and the power of new generation proteomics, review proteomics studies that have been conducted in schizophrenia to date, and propose how such data can be analyzed and integrated with other omics results. The function of a protein is determined by multiple molecular properties, i.e., subcellular localization, posttranslational modification (PTMs) and protein-protein interactions (PPIs). Incorporation of these properties poses additional challenges in proteomics and their integration with other omics; yet is a critical next step to close the loop of multi-omics integration. In sum, the recent advent of high-throughput proteome characterization technologies and novel mathematical approaches enable us to incorporate functional properties of the proteome to offer a comprehensive multi-omics based understanding of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Karin E Borgmann-Winter
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America; Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Sabyasachi Bandyopadhyay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America
| | - Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America.
| |
Collapse
|
10
|
Kudo Y, Wada E. Ratio of naturally retained 15N to 13C in rat brain regions as a marker of brain function and activity. Neurosci Res 2020; 160:32-42. [PMID: 31931028 DOI: 10.1016/j.neures.2020.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 11/17/2022]
Abstract
Our aim in the present study was to clarify the activity-dependent and function-associated retention of stable isotopes (SIs) in rat brain regions. We measured regional distributions of the natural stable isotopes 15N and 13C in brain using a mass spectrometer with a dual inlet system and a double collector for ratiometry, and compared them with distributions obtained from internal organs and skeletal muscle. Although levels of 15N and 13C were very high in brain regions of prenatal rats, and robustly decreased after birth, developmental changes in brain regions became obvious when the ratio of 15N to 13C (abbreviated as 15N/13C) in each brain region was compared. A high correlation was observed between free motor activity and 15N/13C in the hippocampus, cerebrum, and striatum. A significantly higher 15N/13C was also observed in the hippocampus and striatum of rats with higher intelligence, which was evaluated by radial maze learning. Furthermore, 15N/13C in brain regions of trained rats were significantly higher than those of untrained age-matched rats. Our study suggests that the 15N/13C in a specific brain region may reflect the physiological feature of the region. This ratio may hence be applicable as a maker for pathological research on undiagnosed brain diseases.
Collapse
Affiliation(s)
- Yoshihisa Kudo
- Department of Anesthesiology, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo, 193-0998, Japan.
| | - Eitaro Wada
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-31-1 Sugesengoku, Tama-ku, Kawasaki, Kanagawa, 214-0006, Japan.
| |
Collapse
|
11
|
MacDonald ML, Garver M, Newman J, Sun Z, Kannarkat J, Salisbury R, Glausier J, Ding Y, Lewis DA, Yates N, Sweet RA. Synaptic Proteome Alterations in the Primary Auditory Cortex of Individuals With Schizophrenia. JAMA Psychiatry 2020; 77:86-95. [PMID: 31642882 PMCID: PMC6813579 DOI: 10.1001/jamapsychiatry.2019.2974] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/10/2019] [Indexed: 12/28/2022]
Abstract
Importance Findings from unbiased genetic studies have consistently implicated synaptic protein networks in schizophrenia, but the molecular pathologic features within these networks and their contribution to the synaptic and circuit deficits thought to underlie disease symptoms remain unknown. Objective To determine whether protein levels are altered within synapses from the primary auditory cortex (A1) of individuals with schizophrenia and, if so, whether these differences are restricted to the synapse or occur throughout the gray matter. Design, Setting, and Participants This paired case-control study included tissue samples from individuals with schizophrenia obtained from the Allegheny County Office of the Medical Examiner. An independent panel of health care professionals made consensus DSM-IV diagnoses. Each tissue sample from an individual with schizophrenia was matched by sex, age, and postmortem interval with 1 sample from an unaffected control individual. Targeted mass spectrometry was used to measure protein levels in A1 gray matter homogenate and synaptosome preparations. All experimenters were blinded to diagnosis. Mass spectrometry data were collected from September 26 through November 4, 2016, and analyzed from November 3, 2016, to July 15, 2019. Main Outcomes and Measures Primary measures were homogenate and synaptosome protein levels and their coregulation network features. Hypotheses generated before data collection were (1) that levels of canonical postsynaptic proteins in A1 synaptosome preparations would differ between individuals with schizophrenia and controls and (2) that these differences would not be explained by changes in total A1 homogenate protein levels. Results Synaptosome and homogenate protein levels were investigated in 48 individuals with a schizophrenia diagnosis and 48 controls (mean age in both groups, 48 years [range, 17-83 years]); each group included 35 males (73%) and 13 females (27%). Robust alterations (statistical cutoff set at an adjusted Limma P < .05) were observed in synaptosome levels of canonical mitochondrial and postsynaptic proteins that were highly coregulated and not readily explained by postmortem interval, antipsychotic drug treatment, synaptosome yield, or underlying alterations in homogenate protein levels. Conclusions and Relevance These findings suggest a robust and highly coordinated rearrangement of the synaptic proteome. In line with unbiased genetic findings, alterations in synaptic levels of postsynaptic proteins were identified, providing a road map to identify the specific cells and circuits that are impaired in individuals with schizophrenia A1.
Collapse
Affiliation(s)
- Matthew L. MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Megan Garver
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jason Newman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhe Sun
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph Kannarkat
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ryan Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jill Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nathan Yates
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
MacDonald ML, Favo D, Garver M, Sun Z, Arion D, Ding Y, Yates N, Sweet RA, Lewis DA. Laser capture microdissection-targeted mass spectrometry: a method for multiplexed protein quantification within individual layers of the cerebral cortex. Neuropsychopharmacology 2019; 44:743-748. [PMID: 30390066 PMCID: PMC6372704 DOI: 10.1038/s41386-018-0260-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/17/2018] [Indexed: 11/09/2022]
Abstract
The mammalian neocortex is organized into layers distinguished by the size, packing density, and connectivity of their constituent neurons. Many neuropsychiatric illnesses are complex trait disorders with etiologic factors converging on neuronal protein networks. Cortical pathology of neuropsychiatric diseases, such as schizophrenia, is often restricted to, or more pronounced in, certain cortical layers, suggesting that genetic vulnerabilities manifest with laminar specificity. Thus, the ability to investigate cortical layer-specific protein levels in human postmortem brain is highly desirable. Here, we developed and validated a laser capture microdissection-mass spectrometry (LCM-MS) approach to quantify over 200 proteins in cortical layers 3 and 5 of two cohorts of human subjects as well as a monkey model of postmortem interval. LCM-MS was readily implementable and reliably identified protein patterns that differed between cortical layers 3 and 5. Our findings suggest that LCM-MS facilitates the precise quantification of proteins within individual cortical layers from human postmortem brain tissue, providing a powerful tool in the study of neuropsychiatric disease.
Collapse
Affiliation(s)
- Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Daley Favo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan Garver
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhe Sun
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dominique Arion
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan Yates
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casiño C, Powell S, Yashaswini C, LaMarca EA, Kassim B, Javidfar B, Espeso-Gil S, Li A, Won H, Geschwind DH, Ho SM, MacDonald M, Hoffman GE, Roussos P, Zhang B, Hahn CG, Weng Z, Brennand KJ, Akbarian S. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science 2019; 362:362/6420/eaat4311. [PMID: 30545851 DOI: 10.1126/science.aat4311] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
Abstract
To explore the developmental reorganization of the three-dimensional genome of the brain in the context of neuropsychiatric disease, we monitored chromosomal conformations in differentiating neural progenitor cells. Neuronal and glial differentiation was associated with widespread developmental remodeling of the chromosomal contact map and included interactions anchored in common variant sequences that confer heritable risk for schizophrenia. We describe cell type-specific chromosomal connectomes composed of schizophrenia risk variants and their distal targets, which altogether show enrichment for genes that regulate neuronal connectivity and chromatin remodeling, and evidence for coordinated transcriptional regulation and proteomic interaction of the participating genes. Developmentally regulated chromosomal conformation changes at schizophrenia-relevant sequences disproportionally occurred in neurons, highlighting the existence of cell type-specific disease risk vulnerabilities in spatial genome organization.
Collapse
Affiliation(s)
- Prashanth Rajarajan
- Icahn School of Medicine M.D./Ph.D. Program, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Tyler Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Will Liao
- New York Genome Center, New York, NY 10013, USA
| | - Nadine Schrode
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Erin Flaherty
- Icahn School of Medicine M.D./Ph.D. Program, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Charlize Casiño
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Samuel Powell
- Icahn School of Medicine M.D./Ph.D. Program, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Chittampalli Yashaswini
- Icahn School of Medicine M.D./Ph.D. Program, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Elizabeth A LaMarca
- Icahn School of Medicine M.D./Ph.D. Program, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Bibi Kassim
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Behnam Javidfar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Sergio Espeso-Gil
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Aiqun Li
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Hyejung Won
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Seok-Man Ho
- Icahn School of Medicine M.D./Ph.D. Program, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Matthew MacDonald
- Neuropsychiatric Signaling Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Bin Zhang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Chang-Gyu Hahn
- Neuropsychiatric Signaling Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kristen J Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| |
Collapse
|
14
|
Krivinko JM, Erickson SL, Ding Y, Sun Z, Penzes P, MacDonald ML, Yates NA, Ikonomovic MD, Lopez OL, Sweet RA, Kofler J. Synaptic Proteome Compensation and Resilience to Psychosis in Alzheimer's Disease. Am J Psychiatry 2018; 175:999-1009. [PMID: 30021459 PMCID: PMC6167138 DOI: 10.1176/appi.ajp.2018.17080858] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The presence of psychosis in Alzheimer's disease denotes a phenotype with more rapid cognitive deterioration than in Alzheimer's disease without psychosis. Discovery of novel pharmacotherapies that engage therapeutic targets for prevention or treatment of Alzheimer's disease with psychosis would benefit from identifying the neurobiology of resilience to psychosis in Alzheimer's disease. The primary objective of this study was to determine whether alterations in the synaptic proteome were associated with resilience to psychotic symptoms in Alzheimer's disease and, if present, were independent of neuropathologic burden. METHOD Quantitative immunohistochemistry was used to measure multiple neuropathologies in dorsolateral prefrontal cortex from subjects with early and middle-stage Alzheimer's disease who differed in psychosis status. Synaptic proteins were quantified by liquid chromatography-mass spectrometry in gray matter homogenates from these subjects and from neuropathologically unaffected subjects. The synaptic proteome was similarly evaluated in cortical gray matter homogenate and in postsynaptic density fractions from an APPswe/PSEN1dE9 mouse model of amyloidosis with germline reduction in Kalrn, which has been shown to confer resilience to progression of psychosis-associated behaviors relative to APPswe/PSEN1dE9 alone. RESULTS Subjects resilient to psychotic symptoms in Alzheimer's disease had higher levels of synaptic proteins compared with those with psychosis and unaffected control subjects. Neuropathologic burden predicted less than 20% of the variance in psychosis status and did not account for the synaptic protein level differences between groups. Reduction of Kalrn in APPswe/PSEN1dE9 mice resulted in higher levels of synaptic proteins in cortical homogenate and normalized protein levels in the postsynaptic density. CONCLUSIONS Accumulation of synaptic proteins, particularly those that are enriched in the postsynaptic density, is associated with resilience to psychosis in Alzheimer's disease. One candidate mechanism for this synaptic proteome compensation is alteration in levels of proteins that facilitate the transport of synaptic proteins to and from the postsynaptic density.
Collapse
Affiliation(s)
- Josh M Krivinko
- From the Departments of Psychiatry, Cell Biology, Neurology, and Pathology, University of Pittsburgh School of Medicine, Pittsburgh; the Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh; the Departments of Physiology and Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago; the Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh; and the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh
| | - Susan L Erickson
- From the Departments of Psychiatry, Cell Biology, Neurology, and Pathology, University of Pittsburgh School of Medicine, Pittsburgh; the Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh; the Departments of Physiology and Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago; the Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh; and the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh
| | - Ying Ding
- From the Departments of Psychiatry, Cell Biology, Neurology, and Pathology, University of Pittsburgh School of Medicine, Pittsburgh; the Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh; the Departments of Physiology and Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago; the Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh; and the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh
| | - Zhe Sun
- From the Departments of Psychiatry, Cell Biology, Neurology, and Pathology, University of Pittsburgh School of Medicine, Pittsburgh; the Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh; the Departments of Physiology and Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago; the Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh; and the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh
| | - Peter Penzes
- From the Departments of Psychiatry, Cell Biology, Neurology, and Pathology, University of Pittsburgh School of Medicine, Pittsburgh; the Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh; the Departments of Physiology and Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago; the Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh; and the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh
| | - Matthew L MacDonald
- From the Departments of Psychiatry, Cell Biology, Neurology, and Pathology, University of Pittsburgh School of Medicine, Pittsburgh; the Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh; the Departments of Physiology and Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago; the Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh; and the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh
| | - Nathan A Yates
- From the Departments of Psychiatry, Cell Biology, Neurology, and Pathology, University of Pittsburgh School of Medicine, Pittsburgh; the Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh; the Departments of Physiology and Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago; the Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh; and the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh
| | - Milos D Ikonomovic
- From the Departments of Psychiatry, Cell Biology, Neurology, and Pathology, University of Pittsburgh School of Medicine, Pittsburgh; the Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh; the Departments of Physiology and Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago; the Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh; and the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh
| | - Oscar L Lopez
- From the Departments of Psychiatry, Cell Biology, Neurology, and Pathology, University of Pittsburgh School of Medicine, Pittsburgh; the Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh; the Departments of Physiology and Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago; the Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh; and the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh
| | - Robert A Sweet
- From the Departments of Psychiatry, Cell Biology, Neurology, and Pathology, University of Pittsburgh School of Medicine, Pittsburgh; the Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh; the Departments of Physiology and Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago; the Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh; and the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh
| | - Julia Kofler
- From the Departments of Psychiatry, Cell Biology, Neurology, and Pathology, University of Pittsburgh School of Medicine, Pittsburgh; the Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh; the Departments of Physiology and Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago; the Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh; and the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh
| |
Collapse
|
15
|
MacDonald ML, Alhassan J, Newman JT, Richard M, Gu H, Kelly RM, Sampson AR, Fish KN, Penzes P, Wills ZP, Lewis DA, Sweet RA. Selective Loss of Smaller Spines in Schizophrenia. Am J Psychiatry 2017; 174:586-594. [PMID: 28359200 PMCID: PMC5800878 DOI: 10.1176/appi.ajp.2017.16070814] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Decreased density of dendritic spines in adult schizophrenia subjects has been hypothesized to result from increased pruning of excess synapses in adolescence. In vivo imaging studies have confirmed that synaptic pruning is largely driven by the loss of large or mature synapses. Thus, increased pruning throughout adolescence would likely result in a deficit of large spines in adulthood. Here, the authors examined the density and volume of dendritic spines in deep layer 3 of the auditory cortex of 20 schizophrenia and 20 matched comparison subjects as well as aberrant voltage-gated calcium channel subunit protein expression linked to spine loss. METHOD Primary auditory cortex deep layer 3 spine density and volume was assessed in 20 pairs of schizophrenia and matched comparison subjects in an initial and replication cohort (12 and eight pairs) by immunohistochemistry-confocal microscopy. Targeted mass spectrometry was used to quantify postsynaptic density and voltage-gated calcium channel protein expression. The effect of increased voltage-gated calcium channel subunit protein expression on spine density and volume was assessed in primary rat neuronal culture. RESULTS Only the smallest spines are lost in deep layer 3 of the primary auditory cortex in subjects with schizophrenia, while larger spines are retained. Levels of the tryptic peptide ALFDFLK, found in the schizophrenia risk gene CACNB4, are inversely correlated with the density of smaller, but not larger, spines in schizophrenia subjects. Consistent with this observation, CACNB4 overexpression resulted in a lower density of smaller spines in primary neuronal cultures. CONCLUSIONS These findings require a rethinking of the overpruning hypothesis, demonstrate a link between small spine loss and a schizophrenia risk gene, and should spur more in-depth investigations of the mechanisms that govern new or small spine generation and stabilization under normal conditions as well as how this process is impaired in schizophrenia.
Collapse
Affiliation(s)
- Matthew L. MacDonald
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jamil Alhassan
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jason T. Newman
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Michelle Richard
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hong Gu
- Department of Statistics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ryan M. Kelly
- Department of Statistics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alan R. Sampson
- Department of Statistics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kenneth N. Fish
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine
| | - Zachary P. Wills
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - David A. Lewis
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Robert A. Sweet
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| |
Collapse
|
16
|
Qiao R, Li S, Zhou M, Chen P, Liu Z, Tang M, Zhou J. In-depth analysis of the synaptic plasma membrane proteome of small hippocampal slices using an integrated approach. Neuroscience 2017; 353:119-132. [PMID: 28435053 DOI: 10.1016/j.neuroscience.2017.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Comprehensive knowledge of the synaptic plasma membrane (SPM) proteome of a distinct brain region in a defined pathological state would greatly advance the understanding of the underlying biology of synaptic plasticity. The development of innovative approaches for studying the SPM proteome of small brain tissues is highly desired. This study presents a suitable protocol that integrates biotinylation-based affinity capture of cell surface-exposed proteins, isolation of synaptosomes, and biochemical extraction of SPM proteins from biotinylated hippocampal slices. The effectiveness of this integrated method was initially confirmed using immunoblot analysis of synaptic markers. Subsequently, we used highly sensitive mass spectrometry and streamlined bioinformatics to analyze the obtained SPM protein-enriched fraction. Our workflow positively identified 241 SPM proteins comprising 85 previously reported classical proteins from the pre- and/or post-synaptic membrane and 156 nonclassical proteins that localized to both the plasma membrane and synapse, and have not been previously reported as SPM proteins. Further analyses revealed considerable similarities in the physicochemical and functional properties of these proteins. Analysis of the interaction network using STRING indicated that the two groups showed a relatively strong functional correlation. Using MCODE analysis, we observed that 65 nonclassical SPM proteins formed 12 highly interconnected clusters with 47 classical SPM proteins, suggesting that they were the more likely SPM candidates. Taken together, the results of this study provide an integrated tool for analyzing the SPM proteome of small brain tissues, as well as a dataset of putative novel SPM proteins to improve the understanding of hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Rui Qiao
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Shuiming Li
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mi Zhou
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Penghui Chen
- Department of Neurobiology, The Third Military Medical University, Chongqing 400038, China
| | - Zhao Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Min Tang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Jian Zhou
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
| |
Collapse
|
17
|
Kirkwood CM, MacDonald ML, Schempf TA, Vatsavayi AV, Ikonomovic MD, Koppel JL, Ding Y, Sun M, Kofler JK, Lopez OL, Yates NA, Sweet RA. Altered Levels of Visinin-Like Protein 1 Correspond to Regional Neuronal Loss in Alzheimer Disease and Frontotemporal Lobar Degeneration. J Neuropathol Exp Neurol 2016; 75:175-82. [PMID: 26769253 DOI: 10.1093/jnen/nlv018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent studies have implicated the neuronal calcium-sensing protein visinin-like 1 protein (Vilip-1) as a peripheral biomarker in Alzheimer disease (AD), but little is known about expression of Vilip-1 in the brains of patients with AD. We used targeted and quantitative mass spectrometry to measure Vilip-1 peptide levels in the entorhinal cortex (ERC) and the superior frontal gyrus (SF) from cases with early to moderate stage AD, frontotemporal lobar degeneration (FTLD), and cognitively and neuropathologically normal elderly controls. We found that Vilip-1 levels were significantly lower in the ERC, but not in SF, of AD subjects compared to normal controls. In FTLD cases, Vilip-1 levels in the SF were significantly lower than in normal controls. These findings suggest a unique role for cerebrospinal fluid Vilip-1 as a biomarker of ERC neuron loss in AD.
Collapse
|
18
|
Sutherland G, Sheedy D, Stevens J, McCrossin T, Smith C, van Roijen M, Kril J. The NSW brain tissue resource centre: Banking for alcohol and major neuropsychiatric disorders research. Alcohol 2016; 52:33-39. [PMID: 27139235 DOI: 10.1016/j.alcohol.2016.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/17/2016] [Indexed: 12/28/2022]
Abstract
The New South Wales Brain Tissue Resource Centre (NSWBTRC) at the University of Sydney (Australia) is an established human brain bank providing tissue to the neuroscience research community for investigations on alcohol-related brain damage and major psychiatric illnesses such as schizophrenia. The NSWBTRC relies on wide community engagement to encourage those with and without neuropsychiatric illness to consent to donation through its allied research programs. The subsequent provision of high-quality samples relies on standardized operational protocols, associated clinical data, quality control measures, integrated information systems, robust infrastructure, and governance. These processes are continually augmented to complement the changes in internal and external governance as well as the complexity and diversity of advanced investigation techniques. This report provides an overview of the dynamic process of brain banking and discusses the challenges of meeting the future needs of researchers, including synchronicity with other disease-focus collections.
Collapse
|
19
|
Sweet RA, MacDonald ML, Kirkwood CM, Ding Y, Schempf T, Jones-Laughner J, Kofler J, Ikonomovic MD, Lopez OL, Garver ME, Fitz NF, Koldamova R, Yates NA. Apolipoprotein E*4 (APOE*4) Genotype Is Associated with Altered Levels of Glutamate Signaling Proteins and Synaptic Coexpression Networks in the Prefrontal Cortex in Mild to Moderate Alzheimer Disease. Mol Cell Proteomics 2016; 15:2252-62. [PMID: 27103636 DOI: 10.1074/mcp.m115.056580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 01/26/2023] Open
Abstract
It has been hypothesized that Alzheimer disease (AD) is primarily a disorder of the synapse. However, assessment of the synaptic proteome in AD subjects has been limited to a small number of proteins and often included subjects with end-stage pathology. Protein from prefrontal cortex gray matter of 59 AD subjects with mild to moderate dementia and 12 normal elderly subjects was assayed using targeted mass spectrometry to quantify 191 synaptically expressed proteins. The profile of synaptic protein expression clustered AD subjects into two groups. One of these was characterized by reduced expression of glutamate receptor proteins, significantly increased synaptic protein network coexpression, and associated withApolipoprotein E*4 (APOE*4) carrier status. The second group, by contrast, showed few differences from control subjects. A subset of AD subjects had altered prefrontal cortex synaptic proteostasis for glutamate receptors and their signaling partners. Efforts to therapeutically target glutamate receptors in AD may have outcomes dependent on APOE*4 genotype.
Collapse
Affiliation(s)
- Robert A Sweet
- From the Departments of ‡Psychiatry, **Neurology, and ‡‡VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC) and
| | | | | | | | | | | | | | - Milos D Ikonomovic
- **Neurology, and §§Geriatric Research, Education and Clinical Center (GRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Oscar L Lopez
- From the Departments of ‡Psychiatry, **Neurology, and
| | | | - Nicholas F Fitz
- ¶¶Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - Radosveta Koldamova
- ¶¶Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
20
|
D'Aiuto L, Zhi Y, Kumar Das D, Wilcox MR, Johnson JW, McClain L, MacDonald ML, Di Maio R, Schurdak ME, Piazza P, Viggiano L, Sweet R, Kinchington PR, Bhattacharjee AG, Yolken R, Nimgaonka VL, Nimgaonkar VL. Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation. Organogenesis 2015; 10:365-77. [PMID: 25629202 DOI: 10.1080/15476278.2015.1011921] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- a Department of Psychiatry ; Western Psychiatric Institute and Clinic ; University of Pittsburgh School of Medicine ; Pittsburgh , PA USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Banerjee A, Wang HY, Borgmann-Winter KE, MacDonald ML, Kaprielian H, Stucky A, Kvasic J, Egbujo C, Ray R, Talbot K, Hemby SE, Siegel SJ, Arnold SE, Sleiman P, Chang X, Hakonarson H, Gur RE, Hahn CG. Src kinase as a mediator of convergent molecular abnormalities leading to NMDAR hypoactivity in schizophrenia. Mol Psychiatry 2015; 20:1091-100. [PMID: 25330739 PMCID: PMC5156326 DOI: 10.1038/mp.2014.115] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 01/28/2023]
Abstract
Numerous investigations support decreased glutamatergic signaling as a pathogenic mechanism of schizophrenia, yet the molecular underpinnings for such dysregulation are largely unknown. In the post-mortem dorsolateral prefrontal cortex (DLPFC), we found striking decreases in tyrosine phosphorylation of N-methyl-D aspartate (NMDA) receptor subunit 2 (GluN2) that is critical for neuroplasticity. The decreased GluN2 activity in schizophrenia may not be because of downregulation of NMDA receptors as MK-801 binding and NMDA receptor complexes in postsynaptic density (PSD) were in fact increased in schizophrenia cases. At the postreceptor level, however, we found striking reductions in the protein kinase C, Pyk 2 and Src kinase activity that in tandem can decrease GluN2 activation. Given that Src serves as a hub of various signaling mechanisms affecting GluN2 phosphorylation, we postulated that Src hypoactivity may result from convergent alterations of various schizophrenia susceptibility pathways and thus mediate their effects on NMDA receptor signaling. Indeed, the DLPFC of schizophrenia cases exhibit increased PSD-95 and erbB4 and decreased receptor-type tyrosine-protein phosphatase-α (RPTPα) and dysbindin-1, each of which reduces Src activity via protein interaction with Src. To test genomic underpinnings for Src hypoactivity, we examined genome-wide association study results, incorporating 13 394 cases and 34 676 controls. We found no significant association of individual variants of Src and its direct regulators with schizophrenia. However, a protein-protein interaction-based network centered on Src showed significant enrichment of gene-level associations with schizophrenia compared with other psychiatric illnesses. Our results together demonstrate striking decreases in NMDA receptor signaling at the postreceptor level and propose Src as a nodal point of convergent dysregulations affecting NMDA receptor pathway via protein-protein associations.
Collapse
Affiliation(s)
- Anamika Banerjee
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Hoau-Yan Wang
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, NY 10031
| | | | - Mathew L. MacDonald
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Hagop Kaprielian
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Andres Stucky
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, NY 10031
| | - Jessica Kvasic
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, NY 10031
| | - Chijioke Egbujo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Rabindranath Ray
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Konrad Talbot
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Scott E Hemby
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27106
| | - Steven J. Siegel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Steven E. Arnold
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Patrick Sleiman
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Xiao Chang
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| |
Collapse
|
22
|
MacDonald ML, Ding Y, Newman J, Hemby S, Penzes P, Lewis DA, Yates N, Sweet RA. Altered glutamate protein co-expression network topology linked to spine loss in the auditory cortex of schizophrenia. Biol Psychiatry 2015; 77:959-68. [PMID: 25433904 PMCID: PMC4428927 DOI: 10.1016/j.biopsych.2014.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 08/11/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Impaired glutamatergic signaling is believed to underlie auditory cortex pyramidal neuron dendritic spine loss and auditory symptoms in schizophrenia. Many schizophrenia risk loci converge on the synaptic glutamate signaling network. We therefore hypothesized that alterations in glutamate signaling protein expression and co-expression network features are present in schizophrenia. METHODS Gray matter homogenates were prepared from auditory cortex gray matter of 22 schizophrenia and 23 matched control subjects, a subset of whom had been previously assessed for dendritic spine density. One hundred fifty-five selected synaptic proteins were quantified by targeted mass spectrometry. Protein co-expression networks were constructed using weighted gene co-expression network analysis. RESULTS Proteins with evidence for altered expression in schizophrenia were significantly enriched for glutamate signaling pathway proteins (GRIA4, GRIA3, ATP1A3, and GNAQ). Synaptic protein co-expression was significantly decreased in schizophrenia with the exception of a small group of postsynaptic density proteins, whose co-expression increased and inversely correlated with spine density in schizophrenia subjects. CONCLUSIONS We observed alterations in the expression of glutamate signaling pathway proteins. Among these, the novel observation of reduced ATP1A3 expression is supported by strong genetic evidence indicating it may contribute to psychosis and cognitive impairment phenotypes. The observations of altered protein network topology further highlight the complexity of glutamate signaling network pathology in schizophrenia and provide a framework for evaluating future experiments to model the contribution of genetic risk to disease pathology.
Collapse
Affiliation(s)
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA
| | - Jason Newman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Scott Hemby
- Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, NC,Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Il,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Il
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA,Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
23
|
Nascimento JM, Martins-de-Souza D. The proteome of schizophrenia. NPJ SCHIZOPHRENIA 2015; 1:14003. [PMID: 27336025 PMCID: PMC4849438 DOI: 10.1038/npjschz.2014.3] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/24/2022]
Abstract
On observing schizophrenia from a clinical point of view up to its molecular basis, one may conclude that this is likely to be one of the most complex human disorders to be characterized in all aspects. Such complexity is the reflex of an intricate combination of genetic and environmental components that influence brain functions since pre-natal neurodevelopment, passing by brain maturation, up to the onset of disease and disease establishment. The perfect function of tissues, organs, systems, and finally the organism depends heavily on the proper functioning of cells. Several lines of evidence, including genetics, genomics, transcriptomics, neuropathology, and pharmacology, have supported the idea that dysfunctional cells are causative to schizophrenia. Together with the above-mentioned techniques, proteomics have been contributing to understanding the biochemical basis of schizophrenia at the cellular and tissue level through the identification of differentially expressed proteins and consequently their biochemical pathways, mostly in the brain tissue but also in other cells. In addition, mass spectrometry-based proteomics have identified and precisely quantified proteins that may serve as biomarker candidates to prognosis, diagnosis, and medication monitoring in peripheral tissue. Here, we review all data produced by proteomic investigation in the last 5 years using tissue and/or cells from schizophrenic patients, focusing on postmortem brain tissue and peripheral blood serum and plasma. This information has provided integrated pictures of the biochemical systems involved in the pathobiology, and has suggested potential biomarkers, and warrant potential targets to alternative treatment therapies to schizophrenia.
Collapse
Affiliation(s)
- Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| |
Collapse
|
24
|
Moyer CE, Shelton MA, Sweet RA. Dendritic spine alterations in schizophrenia. Neurosci Lett 2014; 601:46-53. [PMID: 25478958 DOI: 10.1016/j.neulet.2014.11.042] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/19/2022]
Abstract
Schizophrenia is a chronic illness affecting approximately 0.5-1% of the world's population. The etiology of schizophrenia is complex, including multiple genes, and contributing environmental effects that adversely impact neurodevelopment. Nevertheless, a final common result, present in many subjects with schizophrenia, is impairment of pyramidal neuron dendritic morphology in multiple regions of the cerebral cortex. In this review, we summarize the evidence of reduced dendritic spine density and other dendritic abnormalities in schizophrenia, evaluate current data that informs the neurodevelopment timing of these impairments, and discuss what is known about possible upstream sources of dendritic spine loss in this illness.
Collapse
Affiliation(s)
- Caitlin E Moyer
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Micah A Shelton
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA.
| |
Collapse
|
25
|
Bayés À, Collins MO, Galtrey CM, Simonnet C, Roy M, Croning MDR, Gou G, van de Lagemaat LN, Milward D, Whittle IR, Smith C, Choudhary JS, Grant SGN. Human post-mortem synapse proteome integrity screening for proteomic studies of postsynaptic complexes. Mol Brain 2014; 7:88. [PMID: 25429717 PMCID: PMC4271336 DOI: 10.1186/s13041-014-0088-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Synapses are fundamental components of brain circuits and are disrupted in over 100 neurological and psychiatric diseases. The synapse proteome is physically organized into multiprotein complexes and polygenic mutations converge on postsynaptic complexes in schizophrenia, autism and intellectual disability. Directly characterising human synapses and their multiprotein complexes from post-mortem tissue is essential to understanding disease mechanisms. However, multiprotein complexes have not been directly isolated from human synapses and the feasibility of their isolation from post-mortem tissue is unknown. RESULTS Here we establish a screening assay and criteria to identify post-mortem brain samples containing well-preserved synapse proteomes, revealing that neocortex samples are best preserved. We also develop a rapid method for the isolation of synapse proteomes from human brain, allowing large numbers of post-mortem samples to be processed in a short time frame. We perform the first purification and proteomic mass spectrometry analysis of MAGUK Associated Signalling Complexes (MASC) from neurosurgical and post-mortem tissue and find genetic evidence for their involvement in over seventy human brain diseases. CONCLUSIONS We have demonstrated that synaptic proteome integrity can be rapidly assessed from human post-mortem brain samples prior to its analysis with sophisticated proteomic methods. We have also shown that proteomics of synapse multiprotein complexes from well preserved post-mortem tissue is possible, obtaining structures highly similar to those isolated from biopsy tissue. Finally we have shown that MASC from human synapses are involved with over seventy brain disorders. These findings should have wide application in understanding the synaptic basis of psychiatric and other mental disorders.
Collapse
|
26
|
Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci 2014; 1338:38-57. [PMID: 25315318 DOI: 10.1111/nyas.12547] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A number of studies have indicated that antagonists of the N-methyl-d-aspartate subtypes of glutamate receptors can cause schizophrenia-like symptoms in healthy individuals and exacerbate symptoms in individuals with schizophrenia. These findings have led to the glutamate hypothesis of schizophrenia. Here we review the evidence for this hypothesis in postmortem studies of brain tissue from individuals affected by schizophrenia, summarizing studies of glutamate neuron morphology, of expression of glutamate receptors and transporters, and of the synthesizing and metabolizing enzymes for glutamate and its co-agonists. We found consistent evidence of morphological alterations of dendrites of glutamatergic neurons in the cerebral cortex of subjects with schizophrenia and of reduced levels of the axon bouton marker synaptophysin. There were no consistent alterations of mRNA expression of glutamate receptors, although there has been limited study of the corresponding proteins. Studies of the glutamate metabolic pathway have been limited, although there is some evidence that excitatory amino acid transporter-2, glutamine synthetase, and glutaminase have altered expression in schizophrenia. Future studies would benefit from additional direct examination of glutamatergic proteins. Further advances, such as selective testing of synaptic microdomains, cortical layers, and neuronal subtypes, may also be required to elucidate the nature of glutamate signaling impairments in schizophrenia.
Collapse
Affiliation(s)
- Wei Hu
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | | | | | | |
Collapse
|
27
|
McCullumsmith RE, Hammond JH, Shan D, Meador-Woodruff JH. Postmortem brain: an underutilized substrate for studying severe mental illness. Neuropsychopharmacology 2014; 39:65-87. [PMID: 24091486 PMCID: PMC3857666 DOI: 10.1038/npp.2013.239] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 02/08/2023]
Abstract
We propose that postmortem tissue is an underutilized substrate that may be used to translate genetic and/or preclinical studies, particularly for neuropsychiatric illnesses with complex etiologies. Postmortem brain tissues from subjects with schizophrenia have been extensively studied, and thus serve as a useful vehicle for illustrating the challenges associated with this biological substrate. Schizophrenia is likely caused by a combination of genetic risk and environmental factors that combine to create a disease phenotype that is typically not apparent until late adolescence. The complexity of this illness creates challenges for hypothesis testing aimed at understanding the pathophysiology of the illness, as postmortem brain tissues collected from individuals with schizophrenia reflect neuroplastic changes from a lifetime of severe mental illness, as well as treatment with antipsychotic medications. While there are significant challenges with studying postmortem brain, such as the postmortem interval, it confers a translational element that is difficult to recapitulate in animal models. On the other hand, data derived from animal models typically provide specific mechanistic and behavioral measures that cannot be generated using human subjects. Convergence of these two approaches has led to important insights for understanding molecular deficits and their causes in this illness. In this review, we discuss the problem of schizophrenia, review the common challenges related to postmortem studies, discuss the application of biochemical approaches to this substrate, and present examples of postmortem schizophrenia studies that illustrate the role of the postmortem approach for generating important new leads for understanding the pathophysiology of severe mental illness.
Collapse
Affiliation(s)
| | - John H Hammond
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Dan Shan
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| |
Collapse
|