1
|
Ogunjinmi OD, Abdullahi T, Somji RA, Bevan CL, Barclay WS, Temperton N, Brooke GN, Giotis ES. The antiviral potential of the antiandrogen enzalutamide and the viral-androgen signaling interplay in seasonal coronaviruses. J Med Virol 2024; 96:e29540. [PMID: 38529542 DOI: 10.1002/jmv.29540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024]
Abstract
The sex disparity in COVID-19 outcomes with males generally faring worse than females has been associated with the androgen-regulated expression of the protease TMPRSS2 and the cell receptor ACE2 in the lung and fueled interest in antiandrogens as potential antivirals. In this study, we explored enzalutamide, an antiandrogen used commonly to treat prostate cancer, as a potential antiviral against the human coronaviruses which cause seasonal respiratory infections (HCoV-NL63, -229E, and -OC43). Using lentivirus-pseudotyped and authentic HCoV, we report that enzalutamide reduced 229E and NL63 entry and infection in both TMPRSS2- and nonexpressing immortalized cells, suggesting a TMPRSS2-independent mechanism. However, no effect was observed against OC43. To decipher this distinction, we performed RNA-sequencing analysis on 229E- and OC43-infected primary human airway cells. Our results show a significant induction of androgen-responsive genes by 229E compared to OC43 at 24 and 72 h postinfection. The virus-mediated effect on AR-signaling was further confirmed with a consensus androgen response element-driven luciferase assay in androgen-depleted MRC-5 cells. Specifically, 229E induced luciferase-reporter activity in the presence and absence of the synthetic androgen mibolerone, while OC43 inhibited induction. These findings highlight a complex interplay between viral infections and androgen-signaling, offering insights for disparities in viral outcomes and antiviral interventions.
Collapse
Affiliation(s)
| | - Tukur Abdullahi
- School of Life Sciences, University of Essex, Colchester, UK
| | - Riaz-Ali Somji
- School of Life Sciences, University of Essex, Colchester, UK
| | - Charlotte L Bevan
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Wendy S Barclay
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, UK
| | - Greg N Brooke
- School of Life Sciences, University of Essex, Colchester, UK
| | - Efstathios S Giotis
- School of Life Sciences, University of Essex, Colchester, UK
- Department of Infectious Diseases, Imperial College London, London, UK
| |
Collapse
|
2
|
Comparative Proteomic and Transcriptomic Analysis of the Impact of Androgen Stimulation and Darolutamide Inhibition. Cancers (Basel) 2022; 15:cancers15010002. [PMID: 36611998 PMCID: PMC9817687 DOI: 10.3390/cancers15010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Several inhibitors of androgen receptor (AR) function are approved for prostate cancer treatment, and their impact on gene transcription has been described. However, the ensuing effects at the protein level are far less well understood. We focused on the AR signaling inhibitor darolutamide and confirmed its strong AR binding and antagonistic activity using the high throughput cellular thermal shift assay (CETSA HT). Then, we generated comprehensive, quantitative proteomic data from the androgen-sensitive prostate cancer cell line VCaP and compared them to transcriptomic data. Following treatment with the synthetic androgen R1881 and darolutamide, global mass spectrometry-based proteomics and label-free quantification were performed. We found a generally good agreement between proteomic and transcriptomic data upon androgen stimulation and darolutamide inhibition. Similar effects were found both for the detected expressed genes and their protein products as well as for the corresponding biological programs. However, in a few instances there was a discrepancy in the magnitude of changes induced on gene expression levels compared to the corresponding protein levels, indicating post-transcriptional regulation of protein abundance. Chromatin immunoprecipitation DNA sequencing (ChIP-seq) and Hi-C chromatin immunoprecipitation (HiChIP) revealed the presence of androgen-activated AR-binding regions and long-distance AR-mediated loops at these genes.
Collapse
|
3
|
Püschel J, Dubrovska A, Gorodetska I. The Multifaceted Role of Aldehyde Dehydrogenases in Prostate Cancer Stem Cells. Cancers (Basel) 2021; 13:4703. [PMID: 34572930 PMCID: PMC8472046 DOI: 10.3390/cancers13184703] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are the only tumor cells possessing self-renewal and differentiation properties, making them an engine of tumor progression and a source of tumor regrowth after treatment. Conventional therapies eliminate most non-CSCs, while CSCs often remain radiation and drug resistant, leading to tumor relapse and metastases. Thus, targeting CSCs might be a powerful tool to overcome tumor resistance and increase the efficiency of current cancer treatment strategies. The identification and isolation of the CSC population based on its high aldehyde dehydrogenase activity (ALDH) is widely accepted for prostate cancer (PCa) and many other solid tumors. In PCa, several ALDH genes contribute to the ALDH activity, which can be measured in the enzymatic assay by converting 4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) aminoacetaldehyde (BAAA) into the fluorescent product BODIPY-aminoacetate (BAA). Although each ALDH isoform plays an individual role in PCa biology, their mutual functional interplay also contributes to PCa progression. Thus, ALDH proteins are markers and functional regulators of CSC properties, representing an attractive target for cancer treatment. In this review, we discuss the current state of research regarding the role of individual ALDH isoforms in PCa development and progression, their possible therapeutic targeting, and provide an outlook for the future advances in this field.
Collapse
Affiliation(s)
- Jakob Püschel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| |
Collapse
|
4
|
Siciliano T, Simons IH, Beier AMK, Ebersbach C, Aksoy C, Seed RI, Stope MB, Thomas C, Erb HHH. A Systematic Comparison of Antiandrogens Identifies Androgen Receptor Protein Stability as an Indicator for Treatment Response. Life (Basel) 2021; 11:874. [PMID: 34575023 PMCID: PMC8468615 DOI: 10.3390/life11090874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Antiandrogen therapy is a primary treatment for patients with metastasized prostate cancer. Whilst the biologic mechanisms of antiandrogens have been extensively studied, the operating protocols used for the characterization of these drugs were not identical, limiting their comparison. Here, the antiandrogens Bicalutamide, Enzalutamide, Apalutamide, and Darolutamide were systematically compared using identical experimental setups. Androgen-dependent LNCaP and LAPC4 cells as well as androgen-independent C4-2 cells were treated with distinct concentrations of antiandrogens. Androgen receptor (AR)-mediated gene transactivation was determined using qPCR. Cell viability was measured by WST1 assay. Protein stability and AR localization were determined using western blot. Response to the tested antiandrogens across cellular backgrounds differed primarily in AR-mediated gene transactivation and cell viability. Antiandrogen treatment in LNCaP and LAPC4 cells resulted in AR protein level reduction, whereas in C4-2 cells marginal decreased AR protein was observed after treatment. In addition, AR downregulation was already detectable after 4 h, whereas reduced AR-mediated gene transactivation was not observed before 6 h. None of the tested antiandrogens displayed an advantage on the tested parameters within one cell line as opposed to the cellular background, which seems to be the primary influence on antiandrogen efficacy. Moreover, the results revealed a prominent role in AR protein stability. It is one of the first events triggered by antiandrogens and correlated with antiandrogen efficiency. Therefore, AR stability may surrogate antiandrogen response and may be a possible target to reverse antiandrogen resistance.
Collapse
Affiliation(s)
- Tiziana Siciliano
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (T.S.); (I.H.S.); (A.-M.K.B.); (C.E.); (C.A.); (C.T.)
| | - Ingo H. Simons
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (T.S.); (I.H.S.); (A.-M.K.B.); (C.E.); (C.A.); (C.T.)
| | - Alicia-Marie K. Beier
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (T.S.); (I.H.S.); (A.-M.K.B.); (C.E.); (C.A.); (C.T.)
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Celina Ebersbach
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (T.S.); (I.H.S.); (A.-M.K.B.); (C.E.); (C.A.); (C.T.)
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Cem Aksoy
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (T.S.); (I.H.S.); (A.-M.K.B.); (C.E.); (C.A.); (C.T.)
| | - Robert I. Seed
- Department of Pathology, University of California, San Francisco, CA 94110, USA;
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany;
- UroFors Consortium (Natural Scientists in Urological Research) of the German Society of Urology, 14163 Berlin, Germany
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (T.S.); (I.H.S.); (A.-M.K.B.); (C.E.); (C.A.); (C.T.)
| | - Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (T.S.); (I.H.S.); (A.-M.K.B.); (C.E.); (C.A.); (C.T.)
- UroFors Consortium (Natural Scientists in Urological Research) of the German Society of Urology, 14163 Berlin, Germany
| |
Collapse
|
5
|
The antiandrogen enzalutamide downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung cells. Nat Commun 2021; 12:4068. [PMID: 34210968 PMCID: PMC8249423 DOI: 10.1038/s41467-021-24342-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2 attacks various organs, most destructively the lung, and cellular entry requires two host cell surface proteins: ACE2 and TMPRSS2. Downregulation of one or both of these is thus a potential therapeutic approach for COVID-19. TMPRSS2 is a known target of the androgen receptor, a ligand-activated transcription factor; androgen receptor activation increases TMPRSS2 levels in various tissues, most notably prostate. We show here that treatment with the antiandrogen enzalutamide—a well-tolerated drug widely used in advanced prostate cancer—reduces TMPRSS2 levels in human lung cells and in mouse lung. Importantly, antiandrogens significantly reduced SARS-CoV-2 entry and infection in lung cells. In support of this experimental data, analysis of existing datasets shows striking co-expression of AR and TMPRSS2, including in specific lung cell types targeted by SARS-CoV-2. Together, the data presented provides strong evidence to support clinical trials to assess the efficacy of antiandrogens as a treatment option for COVID-19. TMPRSS2 is regulated by androgen receptor signalling in the prostate, however it is unclear if blocking this signalling is beneficial in the context of SARS-CoV-2 lung infection. Here the authors show that antiandrogen treatment downregulates TMPRSS2 in the lung and reduces viral entry and infection.
Collapse
|
6
|
Makene VW, Pool EJ. The Effects of Endocrine Disrupting Chemicals on Biomarkers of Inflammation Produced by Lipopolysaccharide Stimulated RAW264.7 Macrophages. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16162914. [PMID: 31416231 PMCID: PMC6721122 DOI: 10.3390/ijerph16162914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are common pollutants in the environment and can induce disruption of the endocrine and immune systems. The present study evaluated the effects of selected common environmental EDCs on secretion of inflammatory biomarkers by RAW264.7 cells. The EDCs investigated were Estradiol (E2), 5α-dihydrotestosterone (DHT), and Bisphenol A (BPA). To evaluate if the effects caused by EDCs were modulated by steroid hormone receptors, antagonists of estrogen and androgen receptors were used. The steroid receptor antagonists used were Tamoxifen, an estrogen receptor antagonist, and Flutamide, an androgen receptor antagonist. Secretion of biomarkers of inflammation, namely nitric oxide (NO) and interleukin 6 (IL-6), were monitored. The NO was determined using Griess reaction and IL-6 was measured by enzyme linked immunosorbent assay (ELISA). Although 5 μg/mL E2, DHT, and BPA were not toxic to RAW264.7 cell cultures, the same treatments significantly (p < 0.001) reduced both NO and IL-6 secretion by lipopolysaccharide (LPS)-stimulated RAW264.7 cell cultures. The suppression of NO and IL-6 secretion indicate inhibition of inflammation by DHT, E2, and BPA. The inhibitory effects of DHT, E2 and BPA are partially mediated via their cellular receptors, because the effects were reversed by their respective receptor antagonists. Flutamide reversed the effects of DHT, while Tamoxifen reversed the effects of E2 and BPA. In conclusion, E2, BPA, and DHT inhibit the synthesis of inflammation biomarkers by LPS-stimulated RAW264.7 cells. The inhibitory effects of EDCs can be partially reversed by the addition of an estrogen receptor antagonist for E2 and BPA, and an androgenic receptor antagonist for DHT. The inhibition of inflammatory response in stimulated RAW264.7 cells may be a useful bioassay model for monitoring estrogenic and androgenic pollutants.
Collapse
Affiliation(s)
- Vedastus W Makene
- Department of Medical Bioscience, University of the Western Cape, Bellville 7535, South Africa.
| | - Edmund J Pool
- Department of Medical Bioscience, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
7
|
Snow O, Lallous N, Singh K, Lack N, Rennie P, Cherkasov A. Androgen receptor plasticity and its implications for prostate cancer therapy. Cancer Treat Rev 2019; 81:101871. [PMID: 31698174 DOI: 10.1016/j.ctrv.2019.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Acquired resistance to a drug treatment is a common problem across many cancers including prostate cancer (PCa) - one of the major factors for male mortality. The androgen receptor (AR) continues to be the main therapeutic PCa target and despite the success of modern targeted therapies such as enzalutamide, resistance to these drugs eventually develops. The AR has found many ways to adapt to treatments including overexpression and production of functional, constitutively active splice variants. However, of particular importance are point mutations in the ligand binding domain of the protein that convert anti-androgens into potent AR agonists. This mechanism appears to be especially prevalent with the AR in spite of some distant similarities to other hormone nuclear receptors. Despite the AR being one of the most studied and attended targets in cancer, those gain-of-function mutations in the receptor remain a significant challenge for the development of PCa therapies. This drives the need to fully characterize such mutations and to consistently screen PCa patients for their occurrence to prevent adverse reactions to anti-androgen drugs. Novel treatments should also be developed to overcome this resistance mechanism and more attention should be given to the possibility of similar occurrences in other cancers.
Collapse
Affiliation(s)
- Oliver Snow
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada; School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, BC, Canada
| | - Nada Lallous
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada
| | - Kriti Singh
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada
| | - Nathan Lack
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada
| | - Paul Rennie
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada.
| |
Collapse
|
8
|
Compounds from Cynomorium songaricum with Estrogenic and Androgenic Activities Suppress the Oestrogen/Androgen-Induced BPH Process. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6438013. [PMID: 28588640 PMCID: PMC5447316 DOI: 10.1155/2017/6438013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/09/2017] [Indexed: 11/22/2022]
Abstract
Objective To investigate the phytoestrogenic and phytoandrogenic activities of compounds isolated from CS and uncover the role of CS in prevention of oestrogen/androgen-induced BPH. Methods Cells were treated with CS compounds, and immunofluorescence assay was performed to detect the nuclear translocation of ERα or AR in MCF-7 or LNCaP cells; luciferase reporter assay was performed to detect ERs or AR transcriptional activity in HeLa or AD293 cells; MTT assay was performed to detect the cell proliferation of MCF-7 or LNCaP cells. Oestrogen/androgen-induced BPH model was established in rat and the anti-BPH, anti-estrogenic, and anti-androgenic activities of CS in vivo were further investigated. Results The nuclear translocation of ERα was stimulated by nine CS compounds, three of which also stimulated AR translocation. The transcriptional activities of ERα and ERβ were induced by five compounds, within which only ECG induced AR transcriptional activity as well. Besides, ECG stimulated the proliferation of both MCF-7 cells and LNCaP cells. CS extract suppressed oestrogen/androgen-induced BPH progress in vivo by downregulation of E2 and T level in serum and alteration of the expressions of ERα, ERβ, and AR in the prostate. Conclusion Our data demonstrates that compounds from CS exhibit phytoestrogenic and phytoandrogenic activities, which may contribute to inhibiting the oestrogen/androgen-induced BPH development.
Collapse
|
9
|
Abstract
Prostate cancer is a leading cause of cancer-related death in Western men. Our understanding of the genetic alterations associated with disease predisposition, development, progression, and therapy response is rapidly improving, at least in part, owing to the development of next-generation sequencing technologies. Large advances have been made in our understanding of the genetics of prostate cancer through the application of whole-exome sequencing, and this review summarises recent advances in this field and discusses how exome sequencing could be used clinically to promote personalised medicine for prostate cancer patients.
Collapse
Affiliation(s)
- Angela C Pine
- Molecular Oncology, School of Biological Sciences, University of Essex, Colchester, Essex, UK
| | - Flavia F Fioretti
- Androgen Signalling Laboratory, Division of Cancer, Department of Surgery and Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, London, UK
| | - Greg N Brooke
- Molecular Oncology, School of Biological Sciences, University of Essex, Colchester, Essex, UK; Androgen Signalling Laboratory, Division of Cancer, Department of Surgery and Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, London, UK
| | - Charlotte L Bevan
- Androgen Signalling Laboratory, Division of Cancer, Department of Surgery and Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, London, UK
| |
Collapse
|