1
|
Akhatova A, Jones C, Coward K, Yeste M. How do lifestyle and environmental factors influence the sperm epigenome? Effects on sperm fertilising ability, embryo development, and offspring health. Clin Epigenetics 2025; 17:7. [PMID: 39819375 PMCID: PMC11740528 DOI: 10.1186/s13148-025-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Recent studies support the influence of paternal lifestyle and diet before conception on the health of the offspring via epigenetic inheritance through sperm DNA methylation, histone modification, and small non-coding RNA (sncRNA) expression and regulation. Smoking may induce DNA hypermethylation in genes related to anti-oxidation and insulin resistance. Paternal diet and obesity are associated with greater risks of metabolic dysfunction in offspring via epigenetic alterations in the sperm. Metabolic changes, such as high blood glucose levels and increased body weight, are commonly observed in the offspring of fathers subjected to chronic stress, in addition to an enhanced risk of depressive-like behaviour and increased sensitivity to stress in both the F0 and F1 generations. DNA methylation is correlated with alterations in sperm quality and the ability to fertilise oocytes, possibly via a differentially regulated MAKP81IP3 signalling pathway. Paternal exposure to toxic endocrine-disrupting chemicals (EDCs) is also linked to the transgenerational transmission of increased predisposition to disease, infertility, testicular disorders, obesity, and polycystic ovarian syndrome (PCOS) in females through epigenetic changes during gametogenesis. As the success of assisted reproductive technology (ART) is also affected by paternal diet, BMI, and alcohol consumption, its outcomes could be improved by modifying factors that are dependent on male lifestyle choices and environmental factors. This review discusses the importance of epigenetic signatures in sperm-including DNA methylation, histone retention, and sncRNA-for sperm functionality, early embryo development, and offspring health. We also discuss the mechanisms by which paternal lifestyle and environmental factors (obesity, smoking, EDCs, and stress) may impact the sperm epigenome.
Collapse
Affiliation(s)
- Ayazhan Akhatova
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- School of Medicine, Nazarbayev University, Zhanybek-Kerey Khan Street 5/1, 010000, Astana, Kazakhstan
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003, Girona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
2
|
Gan S, Zhou S, Ma J, Xiong M, Xiong W, Fan X, Liu K, Gui Y, Chen B, Zhang B, Wang X, Wang F, Li Z, Yan W, Ma M, Yuan S. BAG5 regulates HSPA8-mediated protein folding required for sperm head-tail coupling apparatus assembly. EMBO Rep 2024; 25:2045-2070. [PMID: 38454159 PMCID: PMC11015022 DOI: 10.1038/s44319-024-00112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Teratozoospermia is a significant cause of male infertility, but the pathogenic mechanism of acephalic spermatozoa syndrome (ASS), one of the most severe teratozoospermia, remains elusive. We previously reported Spermatogenesis Associated 6 (SPATA6) as the component of the sperm head-tail coupling apparatus (HTCA) required for normal assembly of the sperm head-tail conjunction, but the underlying molecular mechanism has not been explored. Here, we find that the co-chaperone protein BAG5, expressed in step 9-16 spermatids, is essential for sperm HTCA assembly. BAG5-deficient male mice show abnormal assembly of HTCA, leading to ASS and male infertility, phenocopying SPATA6-deficient mice. In vivo and in vitro experiments demonstrate that SPATA6, cargo transport-related myosin proteins (MYO5A and MYL6) and dynein proteins (DYNLT1, DCTN1, and DNAL1) are misfolded upon BAG5 depletion. Mechanistically, we find that BAG5 forms a complex with HSPA8 and promotes the folding of SPATA6 by enhancing HSPA8's affinity for substrate proteins. Collectively, our findings reveal a novel protein-regulated network in sperm formation in which BAG5 governs the assembly of the HTCA by activating the protein-folding function of HSPA8.
Collapse
Affiliation(s)
- Shiming Gan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jinzhe Ma
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenjing Xiong
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kuan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bei Chen
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Beibei Zhang
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhean Li
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, CA, 90502, USA
| | - Meisheng Ma
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Shkrigunov T, Zgoda V, Klimenko P, Kozlova A, Klimenko M, Lisitsa A, Kurtser M, Petushkova N. The Application of Ejaculate-Based Shotgun Proteomics for Male Infertility Screening. Biomedicines 2023; 12:49. [PMID: 38255156 PMCID: PMC10813512 DOI: 10.3390/biomedicines12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Problems with the male reproductive system are of both medical and social significance. As a rule, spermatozoa and seminal plasma proteomes are investigated separately to assess sperm quality. The current study aimed to compare ejaculate proteomes with spermatozoa and seminal plasma protein profiles regarding the identification of proteins related to fertility scores. A total of 1779, 715, and 2163 proteins were identified in the ejaculate, seminal plasma, and spermatozoa, respectively. Among these datasets, 472 proteins were shared. GO enrichment analysis of the common proteins enabled us to distinguish biological processes such as single fertilization (GO:0007338), spermatid development (GO:0007286), and cell motility (GO:0048870). Among the abundant terms for GO cellular components, zona pellucida receptor complex, sperm fibrous sheath, and outer dense fiber were revealed. Overall, we identified 139 testis-specific proteins. For these proteins, PPI networks that are common in ejaculate, spermatozoa, and seminal plasma were related to the following GO biological processes: cilium movement (GO:0003341), microtubule-based movement (GO:0007018), and sperm motility (GO:0097722). For ejaculate and spermatozoa, they shared 15 common testis-specific proteins with spermatogenesis (GO:0007283) and male gamete generation (GO:0048232). Therefore, we speculated that ejaculate-based proteomics could yield new insights into the peculiar reproductive physiology and spermatozoa function of men and potentially serve as an explanation for male infertility screening.
Collapse
Affiliation(s)
- Timur Shkrigunov
- Laboratory of Protein Biochemistry and Pathology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (N.P.)
| | - Victor Zgoda
- Laboratory of Systems Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Peter Klimenko
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (P.K.); (M.K.)
| | - Anna Kozlova
- Center of Scientific and Practical Education, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Maria Klimenko
- Center for Family Planning and Reproduction, Moscow Department of Health, 117209 Moscow, Russia;
| | - Andrey Lisitsa
- Laboratory of Protein Biochemistry and Pathology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (N.P.)
- Center of Scientific and Practical Education, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Mark Kurtser
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (P.K.); (M.K.)
| | - Natalia Petushkova
- Laboratory of Protein Biochemistry and Pathology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (N.P.)
| |
Collapse
|
4
|
Merges GE, Arévalo L, Kovacevic A, Lohanadan K, de Rooij DG, Simon C, Jokwitz M, Witke W, Schorle H. Actl7b deficiency leads to mislocalization of LC8 type dynein light chains and disruption of murine spermatogenesis. Development 2023; 150:dev201593. [PMID: 37800308 PMCID: PMC10652042 DOI: 10.1242/dev.201593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Actin-related proteins (Arps) are classified according to their similarity to actin and are involved in diverse cellular processes. ACTL7B is a testis-specific Arp, and is highly conserved in rodents and primates. ACTL7B is specifically expressed in round and elongating spermatids during spermiogenesis. Here, we have generated an Actl7b-null allele in mice to unravel the role of ACTL7B in sperm formation. Male mice homozygous for the Actl7b-null allele (Actl7b-/-) were infertile, whereas heterozygous males (Actl7b+/-) were fertile. Severe spermatid defects, such as detached acrosomes, disrupted membranes and flagella malformations start to appear after spermiogenesis step 9 in Actl7b-/- mice, finally resulting in spermatogenic arrest. Abnormal spermatids were degraded and levels of autophagy markers were increased. Co-immunoprecipitation with mass spectrometry experiments identified an interaction between ACTL7B and the LC8 dynein light chains DYNLL1 and DYNLL2, which are first detected in step 9 spermatids and mislocalized when ACTL7B is absent. Our data unequivocally establish that mutations in ACTL7B are directly related to male infertility, pressing for additional research in humans.
Collapse
Affiliation(s)
- Gina E. Merges
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andjela Kovacevic
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Keerthika Lohanadan
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Dirk G. de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Carla Simon
- Cell Migration Unit, Institute of Genetics, University of Bonn, 53115 Bonn, Germany
| | - Melanie Jokwitz
- Cell Migration Unit, Institute of Genetics, University of Bonn, 53115 Bonn, Germany
| | - Walter Witke
- Cell Migration Unit, Institute of Genetics, University of Bonn, 53115 Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
5
|
Huang L, Wei B, Zhao Y, Gong X, Chen L. DYNLT1 promotes mitochondrial metabolism to fuel breast cancer development by inhibiting ubiquitination degradation of VDAC1. Mol Med 2023; 29:72. [PMID: 37280526 DOI: 10.1186/s10020-023-00663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Mitochondrial metabolism has been proposed as an attractive target for breast cancer therapy. The discovery of new mechanisms underlying mitochondrial dysfunction will facilitate the development of new metabolic inhibitors to improve the clinical treatment of breast cancer patients. DYNLT1 (Dynein Light Chain Tctex-Type 1) is a key component of the motor complex that transports cellular cargo along microtubules in the cell, but whether and how DYNLT1 affects mitochondrial metabolism and breast cancer has not been reported. METHODS The expression levels of DYNLT1 were analyzed in clinical samples and a panel of cell lines. The role of DYNLT1 in breast cancer development was investigated using in vivo mouse models and in vitro cell assays, including CCK-8, plate cloning and transwell assay. The role of DYNLT1 in regulating mitochondrial metabolism in breast cancer development is examined by measuring mitochondrial membrane potential and ATP levels. To investigate the underlying molecular mechanism, many methods, including but not limited to Co-IP and ubiquitination assay were used. RESULTS First, we found that DYNLT1 was upregulated in breast tumors, especially in ER + and TNBC subtypes. DYNLT1 promotes the proliferation, migration, invasion and mitochondrial metabolism in breast cancer cells in vitro and breast tumor development in vivo. DYNLT1 colocalizes with voltage-dependent anion channel 1 (VDAC1) on mitochondria to regulate key metabolic and energy functions. Mechanistically, DYNLT1 stabilizes the voltage-dependent anion channel 1 (VDAC1) by hindering E3 ligase Parkin-mediated VDAC1 ubiquitination and degradation. CONCLUSION Our data demonstrate that DYNLT1 promotes mitochondrial metabolism to fuel breast cancer development by inhibiting Parkin-mediated ubiquitination degradation of VDAC1. This study suggests that mitochondrial metabolism can be exploited by targeting the DYNLT1-Parkin-VDAC1 axis to improve the ability of metabolic inhibitors to suppress cancers with limited treatment options, such as triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Ling Huang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bo Wei
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yuran Zhao
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xue Gong
- Nanjing Maternal and Child Health Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| | - Liming Chen
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
6
|
Hiradate Y, Harima R, Yanai R, Hara K, Nagasawa K, Osada M, Kobayashi T, Matsuyama M, Kanno S, Yasui A, Tanemura K. Loss of Axdnd1 causes sterility due to impaired spermatid differentiation in mice. Reprod Med Biol 2022; 21:e12452. [PMID: 35386379 PMCID: PMC8968163 DOI: 10.1002/rmb2.12452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Spermiogenesis, the process of deformation of sperm head morphology and flagella formation, is a phenomenon unique to sperm. Axonemal dynein light chain proteins are localized to sperm flagella and are known to be involved in sperm motility. Here, we focused on the gene axonemal dynein light chain domain containing 1 (Axdnd1) with the aim to determine the function of its protein product AXDND1. Methods To elucidate the role of AXDND1 in spermatogenesis, we generated Axdnd1 knockout (KO) mice using the CRISPR/Cas9 system. The generated mice were subjected to fertility tests and analyzed by immunohistochemistry. Result The Axdnd1 KO mouse exhibited sterility caused by impaired spermiogenesis during the elongation step as well as abnormal nuclear shaping and manchette, which are essential for spermiogenesis. Moreover, AXDND1 showed enriched testicular expression and was localized from the mid-pachytene spermatocytes to the early spermatids. Conclusion Axdnd1 is essential for spermatogenesis in the mouse testes. These findings improve our understanding of spermiogenesis and related defects. According to a recent report, deleterious heterozygous mutations in AXDND1 were found in non-obstructive azoospermia (NOA) patients. Therefore, Axdnd1 KO mice could be used as a model system for NOA, which will greatly contribute to future NOA treatment studies.
Collapse
Affiliation(s)
- Yuki Hiradate
- Laboratory of Animal Reproduction and DevelopmentGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
- Present address:
Department of Experimental Genome ResearchResearch Institute for Microbial DiseasesOsaka UniversityOsakaJapan
| | - Ryua Harima
- Laboratory of Animal Reproduction and DevelopmentGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Rin Yanai
- Laboratory of Animal Reproduction and DevelopmentGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and DevelopmentGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Kazue Nagasawa
- Laboratory of Aquacultural BiologyGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Makoto Osada
- Laboratory of Aquacultural BiologyGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Tomoe Kobayashi
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| | - Makoto Matsuyama
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| | - Shin‐ichiro Kanno
- Division of Dynamic Proteome and IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of DevelopmentAging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Akira Yasui
- Division of Dynamic Proteome and IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of DevelopmentAging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and DevelopmentGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| |
Collapse
|
7
|
Zhang X, Chang Y, Zhai W, Qian F, Zhang Y, Xu S, Guo H, Wang S, Hu R, Zhong X, Zhao X, Chen L, Guan G. A Potential Role for the Gsdf-eEF1α Complex in Inhibiting Germ Cell Proliferation: A Protein-Interaction Analysis in Medaka (Oryzias latipes) From a Proteomics Perspective. Mol Cell Proteomics 2021; 20:100023. [PMID: 33293461 PMCID: PMC7950199 DOI: 10.1074/mcp.ra120.002306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Gonadal soma-derived factor (gsdf) has been demonstrated to be essential for testicular differentiation in medaka (Oryzias latipes). To understand the protein dynamics of Gsdf in spermatogenesis regulation, we used a His-tag "pull-down" assay coupled with shotgun LC-MS/MS to identify a group of potential interacting partners for Gsdf, which included cytoplasmic dynein light chain 2, eukaryotic polypeptide elongation factor 1 alpha (eEF1α), and actin filaments in the mature medaka testis. As for the interaction with transforming growth factor β-dynein being critical for spermatogonial division in Drosophila melanogaster, the physical interactions of Gsdf-dynein and Gsdf-eEF1α were identified through a yeast 2-hybrid screening of an adult testis cDNA library using Gsdf as bait, which were verified by a paired yeast 2-hybrid assay. Coimmunoprecipitation of Gsdf and eEF1α was defined in adult testes as supporting the requirement of a Gsdf and eEF1α interaction in testis development. Proteomics analysis (data are available via ProteomeXchange with identifier PXD022153) and ultrastructural observations showed that Gsdf deficiency activated eEF1α-mediated protein synthesis and ribosomal biogenesis, which in turn led to the differentiation of undifferentiated germ cells. Thus, our results provide a framework and new insight into the coordination of a Gsdf (transforming growth factor β) and eEF1α complex in the basic processes of germ cell proliferation, transcriptional and translational control of sexual RNA, which may be fundamentally conserved across the phyla during sexual differentiation.
Collapse
Affiliation(s)
- Xinting Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yuyang Chang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Wanying Zhai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Feng Qian
- Shanghai Genomics, Inc, Shanghai, China
| | - Yingqing Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Shumei Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Haiyan Guo
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Siyu Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Ruiqin Hu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Xiaozhu Zhong
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong, China
| | - Xiaomiao Zhao
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong, China
| | - Liangbiao Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| | - Guijun Guan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
8
|
Barakat R, Lin PC, Park CJ, Zeineldin M, Zhou S, Rattan S, Brehm E, Flaws JA, Ko CJ. Germline-dependent transmission of male reproductive traits induced by an endocrine disruptor, di-2-ethylhexyl phthalate, in future generations. Sci Rep 2020; 10:5705. [PMID: 32235866 PMCID: PMC7109079 DOI: 10.1038/s41598-020-62584-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/06/2020] [Indexed: 11/23/2022] Open
Abstract
In males, defective reproductive traits induced by an exposure to an endocrine disruptor are transmitted to future generations via epigenetic modification of the germ cells. Interestingly, the impacted future generations display a wide range of heterogeneity in their reproductive traits. In this study, the role that the Y chromosome plays in creating such heterogeneity is explored by testing the hypothesis that the Y chromosome serves as a carrier of the exposure impact to future generations. This hypothesis implies that a male who has a Y chromosome that is from a male that was exposed to an endocrine disruptor will display a more severe reproductive phenotype than a male whose Y chromosome is from an unexposed male. To test this hypothesis, we used a mouse model in which F1 generation animals were exposed prenatally to an endocrine disruptor, di-2-ethylhexyl phthalate (DEHP), and the severity of impacted reproductive traits was compared between the F3 generation males that were descendants of F1 males (paternal lineage) and those from F1 females (maternal lineage). Pregnant dams (F0 generation) were exposed to the vehicle or 20 or 200 μg/kg/day of DEHP from gestation day 11 until birth. Paternal lineage F3 DEHP males exhibited decreased fertility, testicular steroidogenic capacity, and spermatogenesis that were more severely impaired than those of maternal lineage males. Indeed, testicular transcriptome analysis found that a number of Y chromosomal genes had altered expression patterns in the paternal lineage males. This transgenerational difference in the DEHP impact can be attributed specifically to the Y chromosome.
Collapse
Affiliation(s)
- Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Department of Toxicology and Forensic Medicine, College of Veterinary Medicine, Benha University, Qalyubia, Benha, 13518, Egypt
| | - Po-Ching Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Mohamed Zeineldin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sherry Zhou
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Saniya Rattan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Emily Brehm
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - CheMyong J Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
9
|
Kang Z, Qiao N, Liu G, Chen H, Tang Z, Li Y. Copper-induced apoptosis and autophagy through oxidative stress-mediated mitochondrial dysfunction in male germ cells. Toxicol In Vitro 2019; 61:104639. [PMID: 31491480 DOI: 10.1016/j.tiv.2019.104639] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/15/2019] [Accepted: 09/03/2019] [Indexed: 01/20/2023]
Abstract
Excess copper reduces sperm number and motility but the causes are unclear. We investigated the toxic effects of copper exposure on the immortalized male germ cell line GC-1. Copper addition to cells altered viability and morphology in a dose-dependent manner. Copper addition resulted in increased levels of reactive oxygen species (ROS), malonaldehyde (MDA) and lactate dehydrogenase (LDH) while catalase (CAT) activity and glutathione (GSH) declined. The mitochondrial transmembrane potential and ATP levels decreased in response to copper as did mitochondria fission that led to mitochondrial dysfunction. The apoptosis rate was also proportional to the level of copper in the growth medium. Copper also down-regulated Bcl2 and up-regulated Bax, Casp8 and Casp3 linking the effects of copper to increased apoptosis. The levels of mRNA for the autophagy-related genes (Atg3, Atg5, p62, Lc3b/Lc3a) and proteins (Lc3b/Lc3a, BECN1, Atg5, p62) all increased in copper-treated cells as were levels Lc3 determined by fluorescence microscopy. These results indicated that copper induces apoptosis and autophagy through oxidative stress-mediated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhenlong Kang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Na Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Gaoyang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Hanming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
10
|
Elzeiny D, Monir R, El Sabakhawy K, Selim MK, Zalata A. Relationship between DYNLT1 and Beclin1 expression and the fertilising potential of human spermatozoa. Andrologia 2019; 51:e13380. [PMID: 31382319 DOI: 10.1111/and.13380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/09/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
This study aimed to evaluate dynein light chain type 1 (DYNLT1) mRNA expression in mature spermatozoa and to investigate its association with Beclin1 expression to help in understanding of pathogenesis of male infertility. It included 60 infertile men divided into idiopathic (n = 20), accessory gland inflammation (n = 20), and varicocele (n = 20) groups, and 20 healthy fertile men as a control group. Semen parameters were evaluated according to the 2010 World Health Organization criteria. Mature spermatozoa were isolated by Sil-select gradient. Relative quantification of DYNLT1 and Beclin1 mRNA expression in whole sperm pellet and mature spermatozoa was done using real-time PCR. Beclin1 protein was assessed in whole sperm pellet and mature spermatozoa by ELISA. Beclin1 mRNA and protein were significantly increased in spermatozoa from infertile patients of different aetiologies in comparison to healthy controls (p < .05). However, DYNLT1 mRNA expression was significantly decreased in infertile groups than controls (p < .05). Mature spermatozoa extracted from all studied subjects showed increased DYNLT1 mRNA and decreased Beclin1 mRNA and protein expression compared with the whole sample. It is concluded that decreased Beclin1 and increased DYNLT1 mRNA expression in mature spermatozoa may provide an insight into the biological processes that are activated or suppressed during sperm maturation.
Collapse
Affiliation(s)
- Dina Elzeiny
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rehan Monir
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Medical Biochemistry Department, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Karema El Sabakhawy
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed K Selim
- Dermatology and Andrology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Adel Zalata
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Abstract
Proteins play a key role in many functions such as metabolic activity, differentiation, as cargos, and cell fate regulators. It is necessary to know about the proteins involved in male fertility to develop remedies for the treatment of male infertility. However, the role of the proteins is not limited to particular aspect in the biological systems. Some of the proteins act as ion channels such as catsper, and protein such as Nanos is a translational repressor in germ cells and expressed in prenatal period whose role in male fertility is not clearly understood. Rbm5 is a pre-mRNA splicing factor necessary for sperm differentiation whose loss results in deficit in sperm production. DEFB114 is a beta-defensin family protein necessary for sperm motility in lipopolysaccharide-challenged mice. TEX101 is a plasma membrane specific germ cell protein whose function is not clearly identified. Gpr56 is an another adhesion protein whose null mutation leads to arrest of production of pupps. Amyloid precursor protein in Alzheimer's disease plays a role in male fertility whose function is uncertain which has to be considered while targeting them. The study on amyloid precursor protein in male fertility is a novel thing, but requires further study in correlation to Alzheimer's disease.
Collapse
Affiliation(s)
- Eswari Beeram
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Bukke Suman
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Bysani Divya
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|