1
|
Mickael M, Łazarczyk M, Kubick N, Gurba A, Kocki T, Horbańczuk JO, Atanasov AG, Sacharczuk M, Religa P. FEZF2 and AIRE1: An Evolutionary Trade-off in the Elimination of Auto-reactive T Cells in the Thymus. J Mol Evol 2024; 92:72-86. [PMID: 38285197 DOI: 10.1007/s00239-024-10157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Autoimmune Regulator 1 (AIRE1) and Forebrain Embryonic Zinc Finger-Like Protein 2 (FEZF2) play pivotal roles in orchestrating the expression of tissue-restricted antigens (TRA) to facilitate the elimination of autoreactive T cells. AIRE1's presence in the gonads of various vertebrates has raised questions about its potential involvement in gene expression control for germline cell selection. Nevertheless, the evolutionary history of these genes has remained enigmatic, as has the rationale behind their apparent redundancy in vertebrates. Furthermore, the origin of the elimination process itself has remained elusive. To shed light on these mysteries, we conducted a comprehensive evolutionary analysis employing a range of tools, including multiple sequence alignment, phylogenetic tree construction, ancestral sequence reconstruction, and positive selection assessment. Our investigations revealed intriguing insights. AIRE1 homologs emerged during the divergence of T cells in higher vertebrates, signifying its role in this context. Conversely, FEZF2 exhibited multiple homologs spanning invertebrates, lampreys, and higher vertebrates. Ancestral sequence reconstruction demonstrated distinct origins for AIRE1 and FEZF2, underscoring that their roles in regulating TRA have evolved through disparate pathways. Furthermore, it became evident that both FEZF2 and AIRE1 govern a diverse repertoire of genes, encompassing ancient and more recently diverged targets. Notably, FEZF2 demonstrates expression in both vertebrate and invertebrate embryos and germlines, accentuating its widespread role. Intriguingly, FEZF2 harbors motifs associated with autophagy, such as DKFPHP, SYSELWKSSL, and SYSEL, a process integral to cell selection in invertebrates. Our findings suggest that FEZF2 initially emerged to regulate self-elimination in the gonads of invertebrates. As organisms evolved toward greater complexity, AIRE1 likely emerged to complement FEZF2's role, participating in the regulation of cell selection for elimination in both gonads and the thymus. This dynamic interplay between AIRE1 and FEZF2 underscores their multifaceted contributions to TRA expression regulation across diverse evolutionary contexts.
Collapse
Affiliation(s)
- Michel Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzebiec, Poland.
- Department of Immunology, PM Forskningscentreum, Väpnaregatan 22, 58649, Linköping, Sweden.
| | - Marzena Łazarczyk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzebiec, Poland
| | - Norwin Kubick
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Agata Gurba
- Department of Pharmacodynamics, Faculty of Pharmacy, Warsaw Medical University, L Banacha 1, 02-697, Warsaw, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B, 20090, Lublin, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzebiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzebiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| | - Mariusz Sacharczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzebiec, Poland
- Department of Pharmacodynamics, Faculty of Pharmacy, Warsaw Medical University, L Banacha 1, 02-697, Warsaw, Poland
| | - Piotr Religa
- Department of Medicine, Karolinska Institute, 171 77, Solna, Sweden.
| |
Collapse
|
2
|
Filipp D, Manning J, Petrusová J. Extrathymic AIRE-Expressing Cells: A Historical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:33-49. [PMID: 38467971 DOI: 10.1007/978-981-99-9781-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Since its discovery, Aire has been the topic of numerous studies in its role as a transcriptional regulator in the thymus where it promotes the "promiscuous" expression of a large repertoire of tissue-restricted antigens (TRAs) that are normally expressed only in the immune periphery. This process occurs in specialized medullary thymic epithelial cells (mTECs) and mediates the elimination of self-reactive T cells or promotes their conversion to the Foxp3+ regulatory T cell lineage, both of which are required for the prevention of autoimmunity. In recent years, there has been increasing interest in the role of extrathymic Aire expression in peripheral organs. The focus has primarily been on the identification of the cellular source(s) and mechanism(s) by which extrathymic AIRE affects tolerance-related or other physiological processes. A cadre of OMICs tools including single cell RNA sequencing and novel transgenic models to trace Aire expression to perform lineage tracing experiments have shed light on a phenomenon that is more complex than previously thought. In this chapter, we provide a deeper analysis of how extrathymic Aire research has developed and progressed, how cellular sources were identified, and how the function of AIRE was determined. Current data suggests that extrathymic AIRE fulfills a function that differs from what has been observed in the thymus and strongly argues that its main purpose is to regulate transcriptional programs in a cell content-dependent manner. Surprisingly, there is data that also suggests a non-transcriptional role of extrathymic AIRE in the cytoplasm. We have arrived at a potential turning point that will take the field from the classical understanding of AIRE as a transcription factor in control of TRA expression to its role in immunological and non-immunological processes in the periphery.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Jasper Manning
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Petrusová
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Wu P, Yang K, Sun Z, Zhao Y, Manthari RK, Wang J, Cao J. Interleukin-17A knockout or self-recovery alleviated autoimmune reaction induced by fluoride in mouse testis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163616. [PMID: 37086998 DOI: 10.1016/j.scitotenv.2023.163616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Fluoride (F) is usually treated as a hazardous material, and F-caused public health problem has attracted global attention. Previous studies demonstrate that interleukin-17A (IL-17A) plays a crucial role in F-elicited autoimmune orchitis and self-recovery reverses F-induced testicular toxicity to some extent, but these basic mechanisms remain unclear. Thus, we established a 180 d F exposure model of wild type (WT) mice and IL-17A knockout mice (C57BL/6 J background), and 60 d & 120 d self-recovery model based on F exposure model of WT mice, and used various techniques like qRT-PCR, western blot, immunohistochemistry and ELISA to further explore the mechanism of F-induced autoimmune reaction, the role of IL-17A in it and the reversibility of F-caused toxicity in testis. The results indicated that F exposure for 180 d caused the decreased sperm quality, the damaged testis histopathology, the enhanced mRNA and protein expression levels of inflammatory cytokines, the changes of autoantibody such as the appearance and increased content of anti-testicular autoantibodies in sera and the autoantibody deposition in testis, the alterations of autoimmune related genes containing the decreased mRNA and protein expressions of AIRE and FOXP3 with an increase of MHCII, and the reduced protein expressions of CTLA4, and the activation of IL-17A signaling cascade like the elevated mRNA and protein expressions of IL-17A, Act1, NF-κB, AP-1 and CEBPβ, and the increased protein expressions of IL-17RC, with a decrease of IκBα. After IL-17A knockout, 29 of 35 F-induced changes were alleviated. In two self-recovery models, all F-caused differences except fluorine concentration in femur were gradually restored in a time-dependent manner. This study concluded that IL-17A knockout or self-recovery attenuated F-induced testicular injury and decrease of sperm quality through alleviating autoimmune reaction which was involved with the activation of IL-17A pathway, the damage of self-tolerance and the enhancement of antigen presentation.
Collapse
Affiliation(s)
- Panhong Wu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Kaidong Yang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Department of Biotechnology, GITAM Institute of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| |
Collapse
|
4
|
Grochau-Wright ZI, Nedelcu AM, Michod RE. The Genetics of Fitness Reorganization during the Transition to Multicellularity: The Volvocine regA-like Family as a Model. Genes (Basel) 2023; 14:genes14040941. [PMID: 37107699 PMCID: PMC10137558 DOI: 10.3390/genes14040941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The evolutionary transition from single-celled to multicellular individuality requires organismal fitness to shift from the cell level to a cell group. This reorganization of fitness occurs by re-allocating the two components of fitness, survival and reproduction, between two specialized cell types in the multicellular group: soma and germ, respectively. How does the genetic basis for such fitness reorganization evolve? One possible mechanism is the co-option of life history genes present in the unicellular ancestors of a multicellular lineage. For instance, single-celled organisms must regulate their investment in survival and reproduction in response to environmental changes, particularly decreasing reproduction to ensure survival under stress. Such stress response life history genes can provide the genetic basis for the evolution of cellular differentiation in multicellular lineages. The regA-like gene family in the volvocine green algal lineage provides an excellent model system to study how this co-option can occur. We discuss the origin and evolution of the volvocine regA-like gene family, including regA-the gene that controls somatic cell development in the model organism Volvox carteri. We hypothesize that the co-option of life history trade-off genes is a general mechanism involved in the transition to multicellular individuality, making volvocine algae and the regA-like family a useful template for similar investigations in other lineages.
Collapse
Affiliation(s)
| | - Aurora M Nedelcu
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Richard E Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
AIRE in Male Fertility: A New Hypothesis. Cells 2022; 11:cells11193168. [PMID: 36231130 PMCID: PMC9563308 DOI: 10.3390/cells11193168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Male infertility affects approximately 14% of all European men, of which ~44% are characterized as idiopathic. There is an urgency to identify the factors that affect male fertility. One such factor, Autoimmune Regulator (AIRE), a protein found in the thymus, has been studied in the context of central tolerance functioning as a nuclear transcription modulator, responsible for the expression of tissue-restricted antigens in specialized thymic cells that prevent autoimmunity. While its expression in the testes remains enigmatic, we recently observed that sterility in mice correlates with the absence of Aire in the testes, regardless of the deficient expression in medullary thymic epithelial cells or cells of the hematopoietic system. By assessing the Aire transcript levels, we discovered that Sertoli cells are the exclusive source of Aire in the testes, where it most likely plays a non-immune role, suggesting an unknown mechanism by which testicular Aire regulates fertility. Here, we discuss these results in the context of previous reports which have suggested that infertility observed in Aire deficient mice is of an autoimmune aetiology. We present an alternative point of view for the role of Aire in testes in respect to fertility altering the perspective of how Aire's function in the testes is currently perceived.
Collapse
|
6
|
Zou X, Zhang Y, Wang X, Zhang R, Yang W. The Role of AIRE Deficiency in Infertility and Its Potential Pathogenesis. Front Immunol 2021; 12:641164. [PMID: 33679804 PMCID: PMC7933666 DOI: 10.3389/fimmu.2021.641164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
The increasing number of patients with infertility is recognized as an emerging problem worldwide. However, little is known about the cause of infertility. At present, it is believed that infertility may be related to genetic or abnormal immune responses. It has long been indicated that autoimmune regulator (AIRE), a transcription factor, participates in immune tolerance by regulating the expression of thousands of promiscuous tissue-specific antigens in medullary thymic epithelial cells (mTECs), which play a pivotal role in preventing autoimmune diseases. AIRE is also expressed in germ cell progenitors. Importantly, the deletion of AIRE leads to severe oophoritis and age-dependent depletion of follicular reserves and causes altered embryonic development in female mice. AIRE-deficient male mice exhibit altered apoptosis during spermatogenesis and have a significantly decreased breeding capacity. These reports suggest that AIRE deficiency may be responsible for infertility. The causes may be related to the production of autoantibodies against sperm, poor development of germ cells, and abnormal ovarian function, which eventually lead to infertility. Here, we focus on the potential associations of AIRE deficiency with infertility as well as the possible pathogenesis, providing insight into the significance of AIRE in the development of infertility.
Collapse
Affiliation(s)
- Xueyang Zou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yi Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoya Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Rongchao Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
7
|
Niu C, Guo J, Shen X, Ma S, Xia M, Xia J, Zheng Y. Meiotic gatekeeper STRA8 regulates cell cycle by interacting with SETD8 during spermatogenesis. J Cell Mol Med 2020; 24:4194-4211. [PMID: 32090428 PMCID: PMC7171306 DOI: 10.1111/jcmm.15080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
STRA8 (Stimulated By Retinoic Acid Gene 8) is a retinoic acid (RA) induced gene that plays vital roles in spermatogonial proliferation, differentiation and meiosis. The SETD8 and STRA8 protein interaction was discovered using the yeast two-hybrid technique using a mouse spermatogonial stem cell (SSC) cDNA library. The interaction of these two proteins was confirmed using co-immunoprecipitation and identification of key domains governing the protein: protein complex. STRA8 and SETD8 showed a mutual transcriptional regulation pattern that provided evidence that SETD8 negatively regulated transcriptional activity of the STRA8 promoter. The SETD8 protein directly bound to the proximal promoter of the STRA8 gene. STRA8 increased the transcriptional activity of SETD8 promoter in a dose-dependent manner. For the first time, we have discovered that STRA8 and SETD8 display a cell cycle-dependent expression pattern in germline cells. Expression levels of SETD8 and H4K20me1 in S phase of STRA8 overexpression GC1 cells were different from that previously observed in tumour cell lines. In wild-type mice testis, SETD8, H4K20me1 and PCNA co-localized with STRA8 in spermatogonia. Further, our studies quantitated abnormal expression levels of cell cycle and ubiquitination-related factors in STRA8 dynamic models. STRA8 and SETD8 may regulate spermatogenesis via Cdl4-Clu4A-Ddb1 ubiquitinated degradation axis in a PCNA-dependent manner.
Collapse
Affiliation(s)
- Changmin Niu
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Jiaqian Guo
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Xueyi Shen
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Shikun Ma
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Mengmeng Xia
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Jing Xia
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Ying Zheng
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Nedelcu AM. Independent evolution of complex development in animals and plants: deep homology and lateral gene transfer. Dev Genes Evol 2019; 229:25-34. [PMID: 30685797 DOI: 10.1007/s00427-019-00626-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/10/2019] [Indexed: 01/25/2023]
Abstract
The evolution of multicellularity is a premier example of phenotypic convergence: simple multicellularity evolved independently many times, and complex multicellular phenotypes are found in several distant groups. Furthermore, both animal and plant lineages have independently reached extreme levels of morphological, functional, and developmental complexity. This study explores the genetic basis for the parallel evolution of complex multicellularity and development in the animal and green plant (i.e., green algae and land plants) lineages. Specifically, the study (i) identifies the SAND domain-a DNA-binding domain with important roles in the regulation of cell proliferation and differentiation, as unique to animals, green algae, and land plants; and (ii) suggests that the parallel deployment of this ancestral domain in similar regulatory roles could have contributed to the independent evolution of complex development in these distant groups. Given the deep animal-green plant divergence, the limited distribution of the SAND domain is best explained by invoking a lateral gene transfer (LGT) event from a green alga to an early metazoan. The presence of a sequence motif specifically shared by a family of SAND-containing transcription factors involved in the evolution of complex multicellularity in volvocine algae and two types of SAND proteins that emerged early in the evolution of animals is consistent with this scenario. Overall, these findings imply that (i) in addition to be involved in the evolution of similar phenotypes, deep homologous sequences can also contribute to shaping parallel evolutionary trajectories in distant lineages, and (ii) LGT could provide an additional source of latent homologous sequences that can be deployed in analogous roles and affect the evolutionary potentials of distantly related groups.
Collapse
Affiliation(s)
- Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada.
| |
Collapse
|