1
|
Jurkovic CM, Boisvert FM. Evolution of techniques and tools for replication fork proteome and protein interaction studies. Biochem Cell Biol 2024; 102:135-144. [PMID: 38113480 DOI: 10.1139/bcb-2023-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Understanding the complex network of protein-protein interactions (PPI) that govern cellular functions is essential for unraveling the molecular basis of biological processes and diseases. Mass spectrometry (MS) has emerged as a powerful tool for studying protein dynamics, enabling comprehensive analysis of protein function, structure, post-translational modifications, interactions, and localization. This article provides an overview of MS techniques and their applications in proteomics studies, with a focus on the replication fork proteome. The replication fork is a multi-protein assembly involved in DNA replication, and its proper functioning is crucial for maintaining genomic integrity. By combining quantitative MS labeling techniques with various data acquisition methods, researchers have made significant strides in elucidating the complex processes and molecular mechanisms at the replication fork. Overall, MS has revolutionized our understanding of protein dynamics, offering valuable insights into cellular processes and potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Carla-Marie Jurkovic
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Becker PB. Cell-free genomics: transcription factor interactions in reconstituted naïve embryonic chromatin. Biochem Soc Trans 2024; 52:423-429. [PMID: 38329186 DOI: 10.1042/bst20230878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Extracts from Drosophila preblastoderm embryos (DREX) form the basis of a powerful in vitro chromatin reconstitution system that assembles entire genomes into complex chromatin with physiological nucleosome spacing and polymer condensation. As the zygotic genome has not yet been activated in preblastoderm embryos, the reconstitution extract lacks endogenous transcription factors (TFs) and the RNA polymerase machinery. At the same time, it contains high levels of ATP-dependent nucleosome sliding enzymes that render the reconstituted chromatin dynamic. The naïve chromatin can be used to determine the intrinsic DNA binding properties of exogenous, usually recombinant TFs (or DNA binding proteins in general) in a complex chromatin context. Recent applications of the system include the description of cooperation and competition of Drosophila pioneer TFs for composite binding sites, and the characterization of nucleosome interactions of mammalian pioneer TFs in the heterologous system.
Collapse
Affiliation(s)
- Peter B Becker
- Biomedical Center, Molecular Biology Division, Faculty of Medicine, LMU, Munich, Germany
| |
Collapse
|
3
|
Kleene V, Corvaglia V, Chacin E, Forne I, Konrad DB, Khosravani P, Douat C, Kurat CF, Huc I, Imhof A. DNA mimic foldamers affect chromatin composition and disturb cell cycle progression. Nucleic Acids Res 2023; 51:9629-9642. [PMID: 37650653 PMCID: PMC10570015 DOI: 10.1093/nar/gkad681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
The use of synthetic chemicals to selectively interfere with chromatin and the chromatin-bound proteome represents a great opportunity for pharmacological intervention. Recently, synthetic foldamers that mimic the charge surface of double-stranded DNA have been shown to interfere with selected protein-DNA interactions. However, to better understand their pharmacological potential and to improve their specificity and selectivity, the effect of these molecules on complex chromatin needs to be investigated. We therefore systematically studied the influence of the DNA mimic foldamers on the chromatin-bound proteome using an in vitro chromatin assembly extract. Our studies show that the foldamer efficiently interferes with the chromatin-association of the origin recognition complex in vitro and in vivo, which leads to a disturbance of cell cycle in cells treated with foldamers. This effect is mediated by a strong direct interaction between the foldamers and the origin recognition complex and results in a failure of the complex to organise chromatin around replication origins. Foldamers that mimic double-stranded nucleic acids thus emerge as a powerful tool with designable features to alter chromatin assembly and selectively interfere with biological mechanisms.
Collapse
Affiliation(s)
- Vera Kleene
- Department of Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians University, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Valentina Corvaglia
- Department of Pharmacy, Institute of Chemical Epigenetics, Ludwig-Maximilians University, Butenandtstraße 5-13, 81377 München, Germany
| | - Erika Chacin
- Department of Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians University, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Ignasi Forne
- Protein Analysis Unit, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians University, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - David B Konrad
- Department of Pharmacy, Institute of Chemical Epigenetics, Ludwig-Maximilians University, Butenandtstraße 5-13, 81377 München, Germany
| | - Pardis Khosravani
- Core Facility Flow Cytometry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Céline Douat
- Department of Pharmacy, Institute of Chemical Epigenetics, Ludwig-Maximilians University, Butenandtstraße 5-13, 81377 München, Germany
| | - Christoph F Kurat
- Department of Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians University, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Ivan Huc
- Department of Pharmacy, Institute of Chemical Epigenetics, Ludwig-Maximilians University, Butenandtstraße 5-13, 81377 München, Germany
| | - Axel Imhof
- Department of Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians University, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
- Protein Analysis Unit, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians University, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Sun B, Smialowski P, Aftab W, Schmidt A, Forne I, Straub T, Imhof A. Improving SWATH-MS analysis by deep-learning. Proteomics 2022; 23:e2200179. [PMID: 36571325 DOI: 10.1002/pmic.202200179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/22/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Data-independent acquisition (DIA) of tandem mass spectrometry spectra has emerged as a promising technology to improve coverage and quantification of proteins in complex mixtures. The success of DIA experiments is dependent on the quality of spectral libraries used for data base searching. Frequently, these libraries need to be generated by labor and time intensive data dependent acquisition (DDA) experiments. Recently, several algorithms have been published that allow the generation of theoretical libraries by an efficient prediction of retention time and intensity of the fragment ions. Sequential windowed acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) is a DIA method that can be applied at an unprecedented speed, but the fragmentation spectra suffer from a lower quality than data acquired on Orbitrap instruments. To reliably generate theoretical libraries that can be used in SWATH experiments, we developed deep-learning for SWATH analysis (dpSWATH), to improve the sensitivity and specificity of data generated by Q-TOF mass spectrometers. The theoretical library built by dpSWATH allowed us to increase the identification rate of proteins compared to traditional or library-free methods. Based on our analysis we conclude that dpSWATH is a superior prediction framework for SWATH-MS measurements than other algorithms based on Orbitrap data.
Collapse
Affiliation(s)
- Bo Sun
- Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Pawel Smialowski
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Germany.,Faculty of Medicine, Biomedical Center, Computational Biology Unit, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Wasim Aftab
- Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Andreas Schmidt
- Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ignasi Forne
- Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tobias Straub
- Faculty of Medicine, Biomedical Center, Computational Biology Unit, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Axel Imhof
- Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
5
|
Zhao H, Guo M, Zhang F, Shao X, Liu G, Xing Y, Zhao X, Luo L, Cai L. Nucleosome Assembly and Disassembly in vitro Are Governed by Chemical Kinetic Principles. Front Cell Dev Biol 2021; 9:762571. [PMID: 34692710 PMCID: PMC8529108 DOI: 10.3389/fcell.2021.762571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/17/2021] [Indexed: 12/05/2022] Open
Abstract
As the elementary unit of eukaryotic chromatin, nucleosomes in vivo are highly dynamic in many biological processes, such as DNA replication, repair, recombination, or transcription, to allow the necessary factors to gain access to their substrate. The dynamic mechanism of nucleosome assembly and disassembly has not been well described thus far. We proposed a chemical kinetic model of nucleosome assembly and disassembly in vitro. In the model, the efficiency of nucleosome assembly was positively correlated with the total concentration of histone octamer, reaction rate constant and reaction time. All the corollaries of the model were well verified for the Widom 601 sequence and the six artificially synthesized DNA sequences, named CS1–CS6, by using the salt dialysis method in vitro. The reaction rate constant in the model may be used as a new parameter to evaluate the nucleosome reconstitution ability with DNAs. Nucleosome disassembly experiments for the Widom 601 sequence detected by Förster resonance energy transfer (FRET) and fluorescence thermal shift (FTS) assays demonstrated that nucleosome disassembly is the inverse process of assembly and can be described as three distinct stages: opening phase of the (H2A–H2B) dimer/(H3–H4)2 tetramer interface, release phase of the H2A–H2B dimers from (H3–H4)2 tetramer/DNA and removal phase of the (H3–H4)2 tetramer from DNA. Our kinetic model of nucleosome assembly and disassembly allows to confirm that nucleosome assembly and disassembly in vitro are governed by chemical kinetic principles.
Collapse
Affiliation(s)
- Hongyu Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Mingxin Guo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Fenghui Zhang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xueqin Shao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Guoqing Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yongqiang Xing
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xiujuan Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Liaofu Luo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Lu Cai
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
6
|
Eggers N, Becker PB. Cell-free genomics reveal intrinsic, cooperative and competitive determinants of chromatin interactions. Nucleic Acids Res 2021; 49:7602-7617. [PMID: 34181732 PMCID: PMC8287947 DOI: 10.1093/nar/gkab558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Metazoan transcription factors distinguish their response elements from a large excess of similar sequences. We explored underlying principles of DNA shape read-out and factor cooperativity in chromatin using a unique experimental system. We reconstituted chromatin on Drosophila genomes in extracts of preblastoderm embryos, mimicking the naïve state of the zygotic genome prior to developmental transcription activation. We then compared the intrinsic binding specificities of three recombinant transcription factors, alone and in combination, with GA-rich recognition sequences genome-wide. For MSL2, all functional elements reside on the X chromosome, allowing to distinguish physiological elements from non-functional 'decoy' sites. The physiological binding profile of MSL2 is approximated through interaction with other factors: cooperativity with CLAMP and competition with GAF, which sculpts the profile by occluding non-functional sites. An extended DNA shape signature is differentially read out in chromatin. Our results reveal novel aspects of target selection in a complex chromatin environment.
Collapse
Affiliation(s)
- Nikolas Eggers
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, 82152 Planegg, Germany
| | - Peter B Becker
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, 82152 Planegg, Germany
| |
Collapse
|
7
|
Harpprecht L, Baldi S, Schauer T, Schmidt A, Bange T, Robles MS, Kremmer E, Imhof A, Becker PB. A Drosophila cell-free system that senses DNA breaks and triggers phosphorylation signalling. Nucleic Acids Res 2019; 47:7444-7459. [PMID: 31147711 PMCID: PMC6698661 DOI: 10.1093/nar/gkz473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 11/23/2022] Open
Abstract
Preblastoderm Drosophila embryo development is characterized by fast cycles of nuclear divisions. Extracts from these embryos can be used to reconstitute complex chromatin with high efficiency. We now discovered that this chromatin assembly system contains activities that recognize unprotected DNA ends and signal DNA damage through phosphorylation. DNA ends are initially bound by Ku and MRN complexes. Within minutes, the phosphorylation of H2A.V (homologous to γH2A.X) initiates from DNA breaks and spreads over tens of thousands DNA base pairs. The γH2A.V phosphorylation remains tightly associated with the damaged DNA and does not spread to undamaged DNA in the same reaction. This first observation of long-range γH2A.X spreading along damaged chromatin in an in vitro system provides a unique opportunity for mechanistic dissection. Upon further incubation, DNA ends are rendered single-stranded and bound by the RPA complex. Phosphoproteome analyses reveal damage-dependent phosphorylation of numerous DNA-end-associated proteins including Ku70, RPA2, CHRAC16, the exonuclease Rrp1 and the telomer capping complex. Phosphorylation of spindle assembly checkpoint components and of microtubule-associated proteins required for centrosome integrity suggests this cell-free system recapitulates processes involved in the regulated elimination of fatally damaged syncytial nuclei.
Collapse
Affiliation(s)
- Lisa Harpprecht
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Sandro Baldi
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, LMU Munich, 81377 Munich, Germany
| | - Tamas Schauer
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
- Bioinformatics Unit, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas Schmidt
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
- Protein Analysis Unit, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Tanja Bange
- Institute of Medical Psychology, LMU Munich, 80336 Munich, Germany
| | - Maria S Robles
- Institute of Medical Psychology, LMU Munich, 80336 Munich, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, German Research Center for Environmental Health, 81377 Munich, Germany
| | - Axel Imhof
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, LMU Munich, 81377 Munich, Germany
- Protein Analysis Unit, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, LMU Munich, 81377 Munich, Germany
- To whom correspondence should be addressed. Tel: +49 89 2180 75427; Fax: +49 89 2180 75425;
| |
Collapse
|
8
|
Valdés A, Bergström Lind S. Mass Spectrometry-Based Analysis of Time-Resolved Proteome Quantification. Proteomics 2019; 20:e1800425. [PMID: 31652013 DOI: 10.1002/pmic.201800425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/20/2019] [Indexed: 11/09/2022]
Abstract
The aspect of time is essential in biological processes and thus it is important to be able to monitor signaling molecules through time. Proteins are key players in cellular signaling and they respond to many stimuli and change their expression in many time-dependent processes. Mass spectrometry (MS) is an important tool for studying proteins, including their posttranslational modifications and their interaction partners-both in qualitative and quantitative ways. In order to distinguish the different trends over time, proteins, modification sites, and interacting proteins must be compared between different time points, and therefore relative quantification is preferred. In this review, the progress and challenges for MS-based analysis of time-resolved proteome dynamics are discussed. Further, aspects on model systems, technologies, sampling frequencies, and presentation of the dynamic data are discussed.
Collapse
Affiliation(s)
- Alberto Valdés
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Box 599, 75124, Uppsala, Sweden
| |
Collapse
|
9
|
Genome-wide Rules of Nucleosome Phasing in Drosophila. Mol Cell 2018; 72:661-672.e4. [DOI: 10.1016/j.molcel.2018.09.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/27/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
|
10
|
Anjo SI, Santa C, Manadas B. SWATH-MS as a tool for biomarker discovery: From basic research to clinical applications. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600278] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/05/2017] [Accepted: 01/23/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Sandra Isabel Anjo
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Faculty of Sciences and Technology; University of Coimbra; Coimbra Portugal
| | - Cátia Santa
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Institute for Interdisciplinary Research (III); University of Coimbra; Coimbra Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| |
Collapse
|
11
|
Völker-Albert MC, Pusch MC, Schmidt A, Imhof A. Data on the kinetics of in vitro assembled chromatin. Data Brief 2016; 8:353-9. [PMID: 27331114 PMCID: PMC4908269 DOI: 10.1016/j.dib.2016.05.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/10/2016] [Accepted: 05/24/2016] [Indexed: 11/28/2022] Open
Abstract
Here, we use LC–MS/MS and SWATH-MS to describe the kinetics of in vitro assembled chromatin supported by an embryo extract prepared from preblastoderm Drosophila melanogaster embryos (DREX). This system allows easy manipulation of distinct aspects of chromatin assembly such as post-translational histone modifications, the levels of histone chaperones and the concentration of distinct DNA binding factors. In total, 480 proteins have been quantified as chromatin enriched factors and their binding kinetics have been monitored in the time course of 15 min, 1 h and 4 h of chromatin assembly. The data accompanying the manuscript on this approach, Völker-Albert et al., 2016 “A quantitative proteomic analysis of in vitro assembled chromatin” [1], has been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository with the dataset identifier submission number PRIDE: PXD002537 and PRIDE: PXD003445.
Collapse
Affiliation(s)
- Moritz Carl Völker-Albert
- BioMedical Center and Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-University of Munich, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Miriam Caroline Pusch
- BioMedical Center and Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-University of Munich, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Andreas Schmidt
- BioMedical Center and Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-University of Munich, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- BioMedical Center and Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-University of Munich, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| |
Collapse
|