1
|
Nachmias D, Melnikov N, Zorea A, Sharon M, Yemini R, De-Picchoto Y, Tsirkas I, Aharoni A, Frohn B, Schwille P, Zarivach R, Mizrahi I, Elia N. Asgard ESCRT-III and VPS4 reveal conserved chromatin binding properties of the ESCRT machinery. THE ISME JOURNAL 2023; 17:117-129. [PMID: 36221007 PMCID: PMC9751279 DOI: 10.1038/s41396-022-01328-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
The archaeal Asgard superphylum currently stands as the most promising prokaryotic candidate, from which eukaryotic cells emerged. This unique superphylum encodes for eukaryotic signature proteins (ESP) that could shed light on the origin of eukaryotes, but the properties and function of these proteins is largely unresolved. Here, we set to understand the function of an Asgard archaeal protein family, namely the ESCRT machinery, that is conserved across all domains of life and executes basic cellular eukaryotic functions, including membrane constriction during cell division. We find that ESCRT proteins encoded in Loki archaea, express in mammalian and yeast cells, and that the Loki ESCRT-III protein, CHMP4-7, resides in the eukaryotic nucleus in both organisms. Moreover, Loki ESCRT-III proteins associated with chromatin, recruited their AAA-ATPase VPS4 counterpart to organize in discrete foci in the mammalian nucleus, and directly bind DNA. The human ESCRT-III protein, CHMP1B, exhibited similar nuclear properties and recruited both human and Asgard VPS4s to nuclear foci, indicating interspecies interactions. Mutation analysis revealed a role for the N terminal region of ESCRT-III in mediating these phenotypes in both human and Asgard ESCRTs. These findings suggest that ESCRT proteins hold chromatin binding properties that were highly preserved through the billion years of evolution separating Asgard archaea and humans. The conserved chromatin binding properties of the ESCRT membrane remodeling machinery, reported here, may have important implications for the origin of eukaryogenesis.
Collapse
Affiliation(s)
- Dikla Nachmias
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Nataly Melnikov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Alvah Zorea
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Maya Sharon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Reut Yemini
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Yasmin De-Picchoto
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ioannis Tsirkas
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Bela Frohn
- Department of Cellular and Molecular Biophysics, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
2
|
Berthuy OI, Muldur SK, Rossi F, Colpo P, Blum LJ, Marquette CA. Multiplex cell microarrays for high-throughput screening. LAB ON A CHIP 2016; 16:4248-4262. [PMID: 27731880 DOI: 10.1039/c6lc00831c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microarray technology was developed in the early 1990s to measure the transcription levels of thousands of genes in parallel. The basic premise of high-density arraying has since been expanded to create cell microarrays. Cells on chip are powerful experimental tools for high-throughput and multiplex screening of samples or cellular functions. Miniaturization increases assay throughput while reducing both reagent consumption and cell population heterogeneity effect, making these systems attractive for a wide range of assays, from drug discovery to toxicology, stem cell research and therapy. It is usual to functionalize the surface of a substrate to design cell microarrays. One form of cell microarrays, the transfected cell microarray, wherein plasmid DNA or siRNA spotted on the surface of a substrate is reverse-transfected locally into adherent cells, has become a standard tool for parallel cell-based analysis. With the advent of technology, cells can also be directly spotted onto functionalized surfaces using robotic fluid-dispensing devices or printed directly on bio-ink material. We are providing herein an overview of the latest developments in optical cell microarrays allowing high-throughput and high-content analysis.
Collapse
Affiliation(s)
- Ophélie I Berthuy
- Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France.
| | - Sinan K Muldur
- Européen Commission, Joint Research Centre, Institute for Heath and Consumer Protection, Ispra, VA, Italy
| | - François Rossi
- Européen Commission, Joint Research Centre, Institute for Heath and Consumer Protection, Ispra, VA, Italy
| | - Pascal Colpo
- Européen Commission, Joint Research Centre, Institute for Heath and Consumer Protection, Ispra, VA, Italy
| | - Loïc J Blum
- Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France.
| | - Christophe A Marquette
- Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France.
| |
Collapse
|
3
|
Woodruff K, Maerkl SJ. A High-Throughput Microfluidic Platform for Mammalian Cell Transfection and Culturing. Sci Rep 2016; 6:23937. [PMID: 27030663 PMCID: PMC4814922 DOI: 10.1038/srep23937] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/16/2016] [Indexed: 11/28/2022] Open
Abstract
Mammalian synthetic biology could be augmented through the development of high-throughput microfluidic systems that integrate cellular transfection, culturing, and imaging. We created a microfluidic chip that cultures cells and implements 280 independent transfections at up to 99% efficiency. The chip can perform co-transfections, in which the number of cells expressing each protein and the average protein expression level can be precisely tuned as a function of input DNA concentration and synthetic gene circuits can be optimized on chip. We co-transfected four plasmids to test a histidine kinase signaling pathway and mapped the dose dependence of this network on the level of one of its constituents. The chip is readily integrated with high-content imaging, enabling the evaluation of cellular behavior and protein expression dynamics over time. These features make the transfection chip applicable to high-throughput mammalian protein and synthetic biology studies.
Collapse
Affiliation(s)
- Kristina Woodruff
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de, Lausanne, Switzerland
| |
Collapse
|
4
|
Cells on chip for multiplex screening. Biosens Bioelectron 2016; 76:29-37. [DOI: 10.1016/j.bios.2015.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 01/18/2023]
|
5
|
Oh EH, Lee SH, Lee SH, Ko HJ, Park TH. Cell-based high-throughput odorant screening system through visualization on a microwell array. Biosens Bioelectron 2014; 53:18-25. [DOI: 10.1016/j.bios.2013.09.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/18/2013] [Indexed: 11/25/2022]
|
6
|
Optimizing cell arrays for accurate functional genomics. BMC Res Notes 2012; 5:358. [PMID: 22805280 PMCID: PMC3541979 DOI: 10.1186/1756-0500-5-358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/14/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Cellular responses emerge from a complex network of dynamic biochemical reactions. In order to investigate them is necessary to develop methods that allow perturbing a high number of gene products in a flexible and fast way. Cell arrays (CA) enable such experiments on microscope slides via reverse transfection of cellular colonies growing on spotted genetic material. In contrast to multi-well plates, CA are susceptible to contamination among neighboring spots hindering accurate quantification in cell-based screening projects. Here we have developed a quality control protocol for quantifying and minimizing contamination in CA. RESULTS We imaged checkered CA that express two distinct fluorescent proteins and segmented images into single cells to quantify the transfection efficiency and interspot contamination. Compared with standard procedures, we measured a 3-fold reduction of contaminants when arrays containing HeLa cells were washed shortly after cell seeding. We proved that nucleic acid uptake during cell seeding rather than migration among neighboring spots was the major source of contamination. Arrays of MCF7 cells developed without the washing step showed 7-fold lower percentage of contaminant cells, demonstrating that contamination is dependent on specific cell properties. CONCLUSIONS Previously published methodological works have focused on achieving high transfection rate in densely packed CA. Here, we focused in an equally important parameter: The interspot contamination. The presented quality control is essential for estimating the rate of contamination, a major source of false positives and negatives in current microscopy based functional genomics screenings. We have demonstrated that a washing step after seeding enhances CA quality for HeLA but is not necessary for MCF7. The described method provides a way to find optimal seeding protocols for cell lines intended to be used for the first time in CA.
Collapse
|
7
|
Ibl V, Csaszar E, Schlager N, Neubert S, Spitzer C, Hauser MT. Interactome of the plant-specific ESCRT-III component AtVPS2.2 in Arabidopsis thaliana. J Proteome Res 2011; 11:397-411. [PMID: 22010978 PMCID: PMC3252797 DOI: 10.1021/pr200845n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
The endosomal sorting complexes required for transport (ESCRT) guides transmembrane proteins to domains that bud away from the cytoplasm. The ESCRT machinery consists of four complexes. ESCRT complexes 0–II are important for cargo recognition and concentration via ubiquitin binding. Most of the membrane bending function is mediated by the large multimeric ESCRT-III complex and associated proteins. Here we present the first in vivo proteome analysis of a member of the ESCRT-III complex which is unique to the plant kingdom. We show with LC–MS/MS, yeast-two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) that coimmunoprecipitated proteins from Arabidopsisthaliana roots expressing a functional GFP-tagged VACUOLAR PROTEIN SORTING 2.2 (AtVPS2.2) protein are members of the ESCRT-III complex and associated proteins. Therefore we propose that at least in plants the large ESCRT-III membrane scaffolding complex consists of a mixture of SNF7, VPS2 and the associated VPS46 and VPS60 proteins. Apart from transmembrane proteins, numerous membrane-associated but also nuclear and extracellular proteins have been identified, indicating that AtVPS2.2 might be involved in processes beyond the classical ESCRT role. This study is the first in vivo proteome analysis with a tagged ESCRT-III component demonstrating the feasibility of this approach and provides numerous starting points for the investigation of the biological process in which AtVPS2.2 is involved. The endosomal sorting complexes required for transport (ESCRT) guides transmembrane proteins to domains that bud away from the cytoplasm. Most of the membrane bending function is mediated by the ESCRT-III complex. Proteomic analysis was used to identify novel ESCRT-III interactors of Arabidopsis thaliana seedlings expressing a functional GFP-tagged VACUOLAR PROTEIN SORTING2.2 as bait. Some intractors were confirmed by yeast-two-hybrid and bimolecular fluorescence complementation and others will be the target for future investigations.
Collapse
Affiliation(s)
- Verena Ibl
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
8
|
Konrad A, Jochmann R, Kuhn E, Naschberger E, Chudasama P, Stürzl M. Reverse transfected cell microarrays in infectious disease research. Methods Mol Biol 2011; 706:107-18. [PMID: 21104058 DOI: 10.1007/978-1-61737-970-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several human pathogenic viruses encode large genomes with often more than 100 genes. Viral pathogenicity is determined by carefully orchestrated co-operative activities of several different viral genes which trigger the phenotypic functions of the infected cells. Systematic analyses of these complex interactions require high-throughput transfection technology. Here we have provided a laboratory manual for the reverse transfected cell microarray (RTCM; alternative name: cell chip) as a high-throughput transfection procedure, which has been successfully applied for the systematic analyses of single and combination effects of genes encoded by the human herpesvirus-8 on the NF-kappaB signal transduction pathway. In order to quantitatively determine the effects of viral genes in transfected cells, protocols for the use of GFP as an indicator gene and for indirect immunofluorescence staining of cellular target proteins have been included. RTCM provides a useful methodological approach to investigate systematically combination effects of viral genes on cellular functions.
Collapse
Affiliation(s)
- Andreas Konrad
- Division of Molecular and Experimental Surgery, Department of Surgery, University Medical Center Erlangen, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
De Vos WH, Van Neste L, Dieriks B, Joss GH, Van Oostveldt P. High content image cytometry in the context of subnuclear organization. Cytometry A 2010; 77:64-75. [PMID: 19821512 DOI: 10.1002/cyto.a.20807] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The organization of proteins in space and time is essential to their function. To accurately quantify subcellular protein characteristics in a population of cells with regard for the stochasticity of events in a natural context, there is a fast-growing need for image-based cytometry. Simultaneously, the massive amount of data that is generated by image-cytometric analyses, calls for tools that enable pattern recognition and automated classification. In this article, we present a general approach for multivariate phenotypic profiling of individual cell nuclei and quantification of subnuclear spots using automated fluorescence mosaic microscopy, optimized image processing tools, and supervised classification. We demonstrate the efficiency of our analysis by determination of differential DNA damage repair patterns in response to genotoxic stress and radiation, and we show the potential of data mining in pinpointing specific phenotypes after transient transfection. The presented approach allowed for systematic analysis of subnuclear features in large image data sets and accurate classification of phenotypes at the level of the single cell. Consequently, this type of nuclear fingerprinting shows potential for high-throughput applications, such as functional protein assays or drug compound screening.
Collapse
Affiliation(s)
- W H De Vos
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium.
| | | | | | | | | |
Collapse
|
10
|
Steinhauer J, Gijón MA, Riekhof WR, Voelker DR, Murphy RC, Treisman JE. Drosophila lysophospholipid acyltransferases are specifically required for germ cell development. Mol Biol Cell 2010; 20:5224-35. [PMID: 19864461 DOI: 10.1091/mbc.e09-05-0382] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Enzymes of the membrane-bound O-acyltransferase (MBOAT) family add fatty acyl chains to a diverse range of protein and lipid substrates. A chromosomal translocation disrupting human MBOAT1 results in a novel syndrome characterized by male sterility and brachydactyly. We have found that the Drosophila homologues of MBOAT1, Oysgedart (Oys), Nessy (Nes), and Farjavit (Frj), are lysophospholipid acyltransferases. When expressed in yeast, these MBOATs esterify specific lysophospholipids preferentially with unsaturated fatty acids. Generating null mutations for each gene allowed us to identify redundant functions for Oys and Nes in two distinct aspects of Drosophila germ cell development. Embryos lacking both oys and nes show defects in the ability of germ cells to migrate into the mesoderm, a process guided by lipid signals. In addition, oys nes double mutant adult males are sterile due to specific defects in spermatid individualization. oys nes mutant testes, as well as single, double, and triple mutant whole adult animals, show an increase in the saturated fatty acid content of several phospholipid species. Our findings suggest that lysophospholipid acyltransferase activity is essential for germline development and could provide a mechanistic explanation for the etiology of the human MBOAT1 mutation.
Collapse
Affiliation(s)
- Josefa Steinhauer
- Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
11
|
Simpson JC. Screening the secretion machinery: High throughput imaging approaches to elucidate the secretory pathway. Semin Cell Dev Biol 2009; 20:903-9. [DOI: 10.1016/j.semcdb.2009.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/08/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
|
12
|
Jain S, Zhang X, Khandelwal PJ, Saunders AJ, Cummings BS, Oelkers P. Characterization of human lysophospholipid acyltransferase 3. J Lipid Res 2009; 50:1563-70. [PMID: 19351971 DOI: 10.1194/jlr.m800398-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Esterifying lysophospholipids may serve a variety of functions, including phospholipid remodeling and limiting the abundance of bioactive lipids. Recently, a yeast enzyme, Lpt1p, that esterifies an array of lysophospholipids was identified. Described here is the characterization of a human homolog of LPT1 that we have called lysophosphatidylcholine acyltransferase 3 (LPCAT3). Expression of LPCAT3 in Sf9 insect cells conferred robust esterification of lysophosphatidylcholine in vitro. Kinetic analysis found apparent cooperativity with a saturated acyl-CoA having the lowest K0.5 (5 microM), a monounsaturated acyl-CoA having the highest apparent Vmax (759 nmol/min/mg), and two polyunsaturated acyl-CoAs showing intermediate values. Lysophosphatidylethanolamine and lysophosphatidylserine were also utilized as substrates. Electrospray ionization mass spectrometric analysis of phospholipids in Sf9 cells expressing LPCAT3 showed a relative increase in phosphatidylcholine containing saturated acyl chains and a decrease in phosphatidylcholine containing unsaturated acyl chains. Targeted reduction of LPCAT3 expression in HEK293 cells had essentially an opposite effect, resulting in decreased abundance of saturated phospholipid species and more unsaturated species. Reduced LPCAT3 expression resulted in more apoptosis and distinctly fewer lamellipodia, suggesting a necessary role for lysophospholipid esterification in maintaining cellular function and structure.
Collapse
Affiliation(s)
- Shilpa Jain
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
13
|
Matsuda S, Inoue T, Lee HC, Kono N, Tanaka F, Gengyo-Ando K, Mitani S, Arai H. Member of the membrane-bound O-acyltransferase (MBOAT) family encodes a lysophospholipid acyltransferase with broad substrate specificity. Genes Cells 2008; 13:879-88. [PMID: 18782225 DOI: 10.1111/j.1365-2443.2008.01212.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycerophospholipids in biological membranes are metabolically active and participate in a series of deacylation-reacylation reactions, which may lead to accumulation of polyunsaturated fatty acids (PUFAs) at the sn-2 position of the glycerol backbone. The reacylation reaction is believed to be catalyzed by acyl-coenzyme A (acyl-CoA):lysophospholipid acyltransferase. Very recently, we have shown that Caenorhabditis elegans mboa-7, which belongs to the membrane-bound O-acyltransferase (MBOAT) family, encodes lysophosphatidylinositol (LPI)-specific acyltransferase (LPIAT). In this study, we found that knockdown of another member of the MBOAT family in C. elegans, named mboa-6, reduced incorporation of exogenous PUFAs into phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidylethanolamine (PE) in C. elegans. Knockdown of a human mboa-6 homologue, referred to as MBOAT5, also impaired the incorporation of PUFAs into PC, PS and PE in HeLa cells. In in vitro assays, lysoPC (LPC), lysoPS (LPS) and lysoPE (LPE) acyltransferase activities using [(14)C]arachidonoyl-CoA were significantly reduced in the microsomes of MBOAT5 knockdown cells. Conversely, over-expression of MBOAT5 in human embryonic kidney (HEK) 293 cells resulted in great increases in LPC, LPS and LPE acyltransferase activities but not in LPIAT or lysophosphatidic acid (LPA) acyltransferase (LPAAT) activities. These results indicate that human MBOAT5 is a lysophospholipid acyltransferase acting preferentially on LPC, LPS and LPE.
Collapse
Affiliation(s)
- Shinji Matsuda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Gijón MA, Riekhof WR, Zarini S, Murphy RC, Voelker DR. Lysophospholipid acyltransferases and arachidonate recycling in human neutrophils. J Biol Chem 2008; 283:30235-45. [PMID: 18772128 DOI: 10.1074/jbc.m806194200] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cycle of deacylation and reacylation of phospholipids plays a critical role in regulating availability of arachidonic acid for eicosanoid production. The major yeast lysophospholipid acyltransferase, Ale1p, is related to mammalian membrane-bound O-acyltransferase (MBOAT) proteins. We expressed four human MBOATs in yeast strains lacking Ale1p and studied their acyl-CoA and lysophospholipid specificities using novel mass spectrometry-based enzyme assays. MBOAT1 is a lysophosphatidylserine (lyso-PS) acyltransferase with preference for oleoyl-CoA. MBOAT2 also prefers oleoyl-CoA, using lysophosphatidic acid and lysophosphatidylethanolamine as acyl acceptors. MBOAT5 prefers lysophosphatidylcholine and lyso-PS to incorporate linoleoyl and arachidonoyl chains. MBOAT7 is a lysophosphatidylinositol acyltransferase with remarkable specificity for arachidonoyl-CoA. MBOAT5 and MBOAT7 are particularly susceptible to inhibition by thimerosal. Human neutrophils express mRNA for these four enzymes, and neutrophil microsomes incorporate arachidonoyl chains into phosphatidylinositol, phosphatidylcholine, PS, and phosphatidylethanolamine in a thimerosal-sensitive manner. These results strongly implicate MBOAT5 and MBOAT7 in arachidonate recycling, thus regulating free arachidonic acid levels and leukotriene synthesis in neutrophils.
Collapse
Affiliation(s)
- Miguel A Gijón
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
15
|
Pannier AK, Ariazi EA, Bellis AD, Bengali Z, Jordan VC, Shea LD. Bioluminescence imaging for assessment and normalization in transfected cell arrays. Biotechnol Bioeng 2008; 98:486-97. [PMID: 17486653 PMCID: PMC2648395 DOI: 10.1002/bit.21477] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transfected cell arrays (TCAs) represent a high-throughput technique to correlate gene expression with functional cell responses. Despite advances in TCAs, improvements are needed for the widespread application of this technology. We have developed a TCA that combines a two-plasmid system and dual-bioluminescence imaging to quantitatively normalize for variability in transfection and increase sensitivity. The two-plasmids consist of: (i) normalization plasmid present within each spot, and (ii) functional plasmid that varies between spots, responsible for the functional endpoint of the array. Bioluminescence imaging of dual-luciferase reporters (renilla, firefly luciferase) provides sensitive and quantitative detection of cellular response, with minimal post-transfection processing. The array was applied to quantify estrogen receptor alpha (ERalpha) activity in MCF-7 breast cancer cells. A plasmid containing an ERalpha-regulated promoter directing firefly luciferase expression was mixed with a normalization plasmid, complexed with cationic lipids and deposited into an array. ER induction mimicked results obtained through traditional assays methods, with estrogen inducing luciferase expression 10-fold over the antiestrogen fulvestrant or vehicle. Furthermore, the array captured a dose response to estrogen, demonstrating the sensitivity of bioluminescence quantification. This system provides a tool for basic science research, with potential application for the development of patient specific therapies.
Collapse
Affiliation(s)
- Angela K. Pannier
- Department of Interdepartmental Biological Sciences, Northwestern University, Evanston, Illinois
| | | | - Abigail D. Bellis
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd E156, Evanston, Illinois 60208-3120; telephone: 847-491-7043; fax: 847-491-3728; e-mail:
| | - Zain Bengali
- Department of Interdepartmental Biological Sciences, Northwestern University, Evanston, Illinois
| | | | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd E156, Evanston, Illinois 60208-3120; telephone: 847-491-7043; fax: 847-491-3728; e-mail:
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
16
|
Zhou T, Liang B, Su GY, Gong WL, Li HY, Tian LF, He K, Zhao J, Man JH, Li T, Li WH, Zhang ZY, Wang CH, Li AL, Liu H, Pan X, Zhang PJ, Jin BF, Zhang XM. Identification of ubiquitin target proteins using cell-based arrays. J Proteome Res 2007; 6:4397-406. [PMID: 17894482 DOI: 10.1021/pr070299l] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A global understanding of ubiquitinated proteins in vivo is key to unraveling the biological significance of ubiquitination. There are, however, a few effective screening methods for rapid analysis of ubiquitinated proteins. In the current study, we designed a cell-based cDNA expression array combined with cell imaging for the rapid identification of polyubiquitinated proteins, which normally accumulate to form the unique "dot" structure following inhibition of ubiquitin proteasomes. The array consisted of 112 cDNAs encoding key components of major cellular pathways and potential targets of polyubiquitination. Among them, 40 proteins formed accumulation dots in response to proteasome inhibitor, MG-132, treatment. More importantly, 24 of those 40 proteins, such as MAPKAPK3, NLK, and RhoGDI2, are previously not known as the targets of ubiquitin. We further validated our findings by examining the endogenous counterparts of some of these proteins and found that those endogenous proteins form a similar "dot" structure. Immunoprecipitation assays confirmed that these accumulated proteins are polyubiquitinated. Our results demonstrate that this large-scale application of cell-based arrays represents a novel global approach in identifying candidates of the polyubiquitinated proteins. Therefore, the technique utilized here will facilitate future research on ubiquitination-regulated cell signaling.
Collapse
Affiliation(s)
- Tao Zhou
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Starkuviene V, Pepperkok R. The potential of high-content high-throughput microscopy in drug discovery. Br J Pharmacol 2007; 152:62-71. [PMID: 17603554 PMCID: PMC1978277 DOI: 10.1038/sj.bjp.0707346] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fluorescence microscopy is a powerful method to study protein function in its natural habitat, the living cell. With the availability of the green fluorescent protein and its spectral variants, almost any gene of interest can be fluorescently labelled in living cells opening the possibility to study protein localization, dynamics and interactions. The emergence of automated cellular systems allows rapid visualization of large groups of cells and phenotypic analysis in a quantitative manner. Here, we discuss recent advances in high-content high-throughput microscopy and its potential application to several steps of the drug discovery process.
Collapse
Affiliation(s)
- V Starkuviene
- Cell Biology and Cell Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
18
|
Wu G, Doberstein SK. HTS technologies in biopharmaceutical discovery. Drug Discov Today 2006; 11:718-24. [PMID: 16846799 DOI: 10.1016/j.drudis.2006.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 04/07/2006] [Accepted: 06/14/2006] [Indexed: 12/31/2022]
Abstract
The concepts and philosophies of HTS can be productively applied to the discovery of new biopharmaceuticals. It is now possible, comprehensively and systematically, to enumerate, clone, produce and screen all secreted proteins, by building upon knowledge accumulated over the past two decades in HTS, genomics and parallel protein expression technologies. Each of the crucial operational components (comprehensive and high-quality cDNA library construction, proper protein-sequence classification, high-throughput protein production, medically relevant assays, state-of-the-art screening and data management) must be optimized to increase the chances of success. In this review, we draw comparisons between small-molecule and protein screening to illuminate common underlying principles as well as differences between the two operations.
Collapse
Affiliation(s)
- Ge Wu
- Five Prime Therapeutics, 1650 Owens St., Suite 200, San Francisco, CA 94158, USA.
| | | |
Collapse
|
19
|
Kemmer D, Podowski RM, Arenillas D, Lim J, Hodges E, Roth P, Sonnhammer ELL, Höög C, Wasserman WW. NovelFam3000--uncharacterized human protein domains conserved across model organisms. BMC Genomics 2006; 7:48. [PMID: 16533400 PMCID: PMC1440326 DOI: 10.1186/1471-2164-7-48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 03/13/2006] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite significant efforts from the research community, an extensive portion of the proteins encoded by human genes lack an assigned cellular function. Most metazoan proteins are composed of structural and/or functional domains, of which many appear in multiple proteins. Once a domain is characterized in one protein, the presence of a similar sequence in an uncharacterized protein serves as a basis for inference of function. Thus knowledge of a domain's function, or the protein within which it arises, can facilitate the analysis of an entire set of proteins. DESCRIPTION From the Pfam domain database, we extracted uncharacterized protein domains represented in proteins from humans, worms, and flies. A data centre was created to facilitate the analysis of the uncharacterized domain-containing proteins. The centre both provides researchers with links to dispersed internet resources containing gene-specific experimental data and enables them to post relevant experimental results or comments. For each human gene in the system, a characterization score is posted, allowing users to track the progress of characterization over time or to identify for study uncharacterized domains in well-characterized genes. As a test of the system, a subset of 39 domains was selected for analysis and the experimental results posted to the NovelFam3000 system. For 25 human protein members of these 39 domain families, detailed sub-cellular localizations were determined. Specific observations are presented based on the analysis of the integrated information provided through the online NovelFam3000 system. CONCLUSION Consistent experimental results between multiple members of a domain family allow for inferences of the domain's functional role. We unite bioinformatics resources and experimental data in order to accelerate the functional characterization of scarcely annotated domain families.
Collapse
Affiliation(s)
- Danielle Kemmer
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden
| | - Raf M Podowski
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden
| | - David Arenillas
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Jonathan Lim
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Emily Hodges
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden
| | - Peggy Roth
- Department of Developmental Biology, Stockholm University, Stockholm, Sweden
| | - Erik LL Sonnhammer
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden
| | - Christer Höög
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
20
|
Wu W, Hodges E, Höög C. Thorough validation of siRNA-induced cell death phenotypes defines new anti-apoptotic protein. Nucleic Acids Res 2006; 34:e13. [PMID: 16432257 PMCID: PMC1345702 DOI: 10.1093/nar/gnj015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Loss-of-function by means of RNA interference in cultured human cells enables rapid pathway dissection on a genome-scale. Improved siRNA design and key validation protocols are required to eliminate falsely identified phenotypes resulting from potential off-target consequences. Here, we demonstrate a validation strategy involving several steps for verifying cell death phenotypes revealed during loss-of-function screening. First, from a set of 45 novel human genes we identified gene candidates that, when silenced, induce apoptosis in cultured HeLa cells. For those candidates, we performed more extensive validation with multiple effective siRNAs. In addition, we designed rescue experiments involving candidate genes delivered exogenously and containing silent mutations in the siRNA target regions. Rescue of the observed knockdown phenotype demonstrated an original and more stringent validation of the siRNA's selectivity and the phenotype specificity for the target gene. As a result, our data reveals an anti-apoptotic function for novel human breast adenocarcinoma marker BC-2, adding new depth to BC-2′s description as a putative tumor marker involved in cancer related pathways.
Collapse
Affiliation(s)
- Weilin Wu
- Center for Genomics and Bioinformatics, Karolinska Institute, Stockholm, SE-17177, Sweden.
| | | | | |
Collapse
|
21
|
Technical Highlights of the Recent Literature. Biotechniques 2005. [DOI: 10.2144/05392ci01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|