1
|
Whalen C, Verma A, Kurashima K, Carter J, Nazzal H, Jain A. Novel Models for Assessing and Pathophysiology of Hepatic Ischemia-Reperfusion Injury Mechanisms. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1507. [PMID: 39336548 PMCID: PMC11434406 DOI: 10.3390/medicina60091507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a major cause of postoperative hepatic dysfunction and liver failure involving cellular damage to previously ischemic tissues to which blood flow is restored. The reestablishment of blood flow is essential for salvaging ischemic tissues. The reperfusion itself, however, can paradoxically lead to further cellular damage, which involves a multi-factorial process resulting in extensive tissue damage, which can threaten the function and viability of the liver and other organ systems. The following review outlines multiple models for in-lab analysis of the various hepatic IRI mechanisms, including murine, porcine, cell lines, and machine perfusion models.
Collapse
Affiliation(s)
- Connor Whalen
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Arun Verma
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Kento Kurashima
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Jasmine Carter
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Hala Nazzal
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ajay Jain
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
2
|
Huang CF, Su P, Fisher TD, Levitsky J, Kelleher NL, Forte E. Mass spectrometry-based proteomics for advancing solid organ transplantation research. FRONTIERS IN TRANSPLANTATION 2023; 2:1286881. [PMID: 38993855 PMCID: PMC11235370 DOI: 10.3389/frtra.2023.1286881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 07/13/2024]
Abstract
Scarcity of high-quality organs, suboptimal organ quality assessment, unsatisfactory pre-implantation procedures, and poor long-term organ and patient survival are the main challenges currently faced by the solid organ transplant (SOT) field. New biomarkers for assessing graft quality pre-implantation, detecting, and predicting graft injury, rejection, dysfunction, and survival are critical to provide clinicians with invaluable prediction tools and guidance for personalized patients' treatment. Additionally, new therapeutic targets are also needed to reduce injury and rejection and improve transplant outcomes. Proteins, which underlie phenotypes, are ideal candidate biomarkers of health and disease statuses and therapeutic targets. A protein can exist in different molecular forms, called proteoforms. As the function of a protein depends on its exact composition, proteoforms can offer a more accurate basis for connection to complex phenotypes than protein from which they derive. Mass spectrometry-based proteomics has been largely used in SOT research for identification of candidate biomarkers and therapeutic intervention targets by so-called "bottom-up" proteomics (BUP). However, such BUP approaches analyze small peptides in lieu of intact proteins and provide incomplete information on the exact molecular composition of the proteins of interest. In contrast, "Top-down" proteomics (TDP), which analyze intact proteins retaining proteoform-level information, have been only recently adopted in transplantation studies and already led to the identification of promising proteoforms as biomarkers for organ rejection and dysfunction. We anticipate that the use of top-down strategies in combination with new technological advancements in single-cell and spatial proteomics could drive future breakthroughs in biomarker and therapeutic target discovery in SOT.
Collapse
Affiliation(s)
- Che-Fan Huang
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
| | - Pei Su
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
- Department of Chemistry, Northwestern University, Evanston, IL, United States
| | - Troy D. Fisher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
| | - Josh Levitsky
- Division of Gastroenterology and Hepatology, Comprehensive Transplant Center Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Neil L. Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
- Department of Chemistry, Northwestern University, Evanston, IL, United States
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, IL, United States
| | - Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, IL, United States
| |
Collapse
|
3
|
Norén Å, Oltean M, Friman S, Molinaro A, Mölne J, Sihlbom C, Herlenius G, Thorsell A. Liver Graft Proteomics Reveals Potential Incipient Mechanisms behind Early Renal Dysfunction after Liver Transplantation. Int J Mol Sci 2022; 23:ijms231911929. [PMID: 36233231 PMCID: PMC9569532 DOI: 10.3390/ijms231911929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022] Open
Abstract
Acute kidney injury (AKI) is frequent after liver transplantation (LT) and correlates with later development of chronic kidney disease. Its etiology is multifactorial and combines pre-, intra-, and postoperative factors. Additionally, the liver graft itself seems an important element in the development of AKI, yet the detailed mechanisms remain unclear. We hypothesized that grafts of LT recipients developing significant early AKI may show distinct proteomic alterations, and we set out to identify proteome differences between LT recipients developing moderate or severe AKI (n = 7) and LT recipients without early renal injury (n = 7). Liver biopsies obtained one hour after reperfusion were assessed histologically and using quantitative proteomics. Several cytokines and serum amyloid A2 (SAA2) were analyzed in serum samples obtained preoperatively, 2−4 h, and 20−24 h after graft reperfusion, respectively. LT induced mild histological alterations without significant differences between groups but uniformly altered liver function tests peaking on postoperative day 1, with a trend towards more severe alterations in patients developing AKI. Global quantitative proteomic analysis revealed 136 proteins differing significantly in their expression levels (p < 0.05, FC 20%): 80 proteins had higher and 56 had lower levels in the AKI group. Most of these proteins were related to immune and inflammatory responses, host defense, and neutrophil degranulation. No differences between the studied pro- and anti-inflammatory cytokines or SAA2 between groups were found at any moment. Our results suggest that grafts of LT patients who develop early AKI reveal a distinct proteome dominated by an early yet prominent activation of the innate immunity. These findings support the hypothesis that AKI after LT may be favored by certain graft characteristics.
Collapse
Affiliation(s)
- Åsa Norén
- The Transplant Institute, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 41345 Gothenburg, Sweden
| | - Mihai Oltean
- The Transplant Institute, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 41345 Gothenburg, Sweden
- Correspondence:
| | - Styrbjörn Friman
- The Transplant Institute, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 41345 Gothenburg, Sweden
| | - Antonio Molinaro
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, 41345 Gothenburg, Sweden
| | - Johan Mölne
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 5, 41390 Gothenburg, Sweden
| | - Gustaf Herlenius
- The Transplant Institute, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 41345 Gothenburg, Sweden
| | - Annika Thorsell
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 5, 41390 Gothenburg, Sweden
| |
Collapse
|
4
|
Dai Q, Ain Q, Rooney M, Song F, Zipprich A. Role of IQ Motif-Containing GTPase-Activating Proteins in Hepatocellular Carcinoma. Front Oncol 2022; 12:920652. [PMID: 35785216 PMCID: PMC9243542 DOI: 10.3389/fonc.2022.920652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
IQ motif-containing GTPase-activating proteins (IQGAPs) are a class of scaffolding proteins, including IQGAP1, IQGAP2, and IQGAP3, which govern multiple cellular activities by facilitating cytoskeletal remodeling and cellular signal transduction. The role of IQGAPs in cancer initiation and progression has received increasing attention in recent years, especially in hepatocellular carcinoma (HCC), where the aberrant expression of IQGAPs is closely related to patient prognosis. IQGAP1 and 3 are upregulated and are considered oncogenes in HCC, while IQGAP2 is downregulated and functions as a tumor suppressor. This review details the three IQGAP isoforms and their respective structures. The expression and role of each protein in different liver diseases and mainly in HCC, as well as the underlying mechanisms, are also presented. This review also provides a reference for further studies on IQGAPs in HCC.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
- Else Kröner Graduate School for Medical Students “Jena School for Ageing Medicine (JSAM)”, Jena University Hospital, Jena, Germany
| | - Quratul Ain
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Michael Rooney
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Fei Song
- Department of Urology, Jena University Hospital, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
- *Correspondence: Alexander Zipprich,
| |
Collapse
|
5
|
Willemse J, van Tienderen G, van Hengel E, Schurink I, van der Ven D, Kan Y, de Ruiter P, Rosmark O, Westergren-Thorsson G G, Schneeberger K, van der Eerden B, Roest H, Spee B, van der Laan L, de Jonge J, Verstegen M. Hydrogels derived from decellularized liver tissue support the growth and differentiation of cholangiocyte organoids. Biomaterials 2022; 284:121473. [PMID: 35344800 DOI: 10.1016/j.biomaterials.2022.121473] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
Abstract
Human cholangiocyte organoids are promising for regenerative medicine applications, such as repair of damaged bile ducts. However, organoids are typically cultured in mouse tumor-derived basement membrane extracts (BME), which is poorly defined, highly variable and limits the direct clinical applications of organoids in patients. Extracellular matrix (ECM)-derived hydrogels prepared from decellularized human or porcine livers are attractive alternative culture substrates. Here, the culture and expansion of human cholangiocyte organoids in liver ECM(LECM)-derived hydrogels is described. These hydrogels support proliferation of cholangiocyte organoids and maintain the cholangiocyte-like phenotype. The use of LECM hydrogels does not significantly alter the expression of selected genes or proteins, such as the cholangiocyte marker cytokeratin-7, and no species-specific effect is found between human or porcine LECM hydrogels. Proliferation rates of organoids cultured in LECM hydrogels are lower, but the differentiation capacity of the cholangiocyte organoids towards hepatocyte-like cells is not altered by the presence of tissue-specific ECM components. Moreover, human LECM extracts support the expansion of ICO in a dynamic culture set up without the need for laborious static culture of organoids in hydrogel domes. Liver ECM hydrogels can successfully replace tumor-derived BME and can potentially unlock the full clinical potential of human cholangiocyte organoids.
Collapse
Affiliation(s)
- Jorke Willemse
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Gilles van Tienderen
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Eline van Hengel
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Ivo Schurink
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Diana van der Ven
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Yik Kan
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Petra de Ruiter
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Oskar Rosmark
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Kerstin Schneeberger
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Calcium and Bone Metabolism, Erasmus MC-University, Rotterdam, the Netherlands
| | - Henk Roest
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Luc van der Laan
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Monique Verstegen
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Peng X, Wang T, Gao H, Yue X, Bian W, Mei J, Zhang Y. The interplay between IQGAP1 and small GTPases in cancer metastasis. Biomed Pharmacother 2021; 135:111243. [PMID: 33434854 DOI: 10.1016/j.biopha.2021.111243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 01/07/2023] Open
Abstract
The metastatic spread of tumor cells to distant anatomical locations is a critical cause for disease progression and leads to more than 90 % of cancer-related deaths. IQ motif-containing GTPase-activating protein 1 (IQGAP1), a prominent regulator in the cancer metastasis process, is a scaffold protein that interacts with components of the cytoskeleton. As a critical node within the small GTPase network, IQGAP1 acts as a binding partner of several small GTPases, which in turn function as molecular switches to control most cellular processes, including cell migration and invasion. Given the significant interaction between IQGAP1 and small GTPases in cancer metastasis, we briefly elucidate the role of IQGAP1 in regulating cancer metastasis and the varied interactions existing between IQGAP1 and small GTPases. In addition, the potential regulators for IQGAP1 activity and its interaction with small GTPases are also incorporated in this review. Overall, we comprehensively summarize the role of IQGAP1 in cancer tumorigenicity and metastasis, which may be a potential anti-tumor target to restrain cancer progression.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Tiejun Wang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| | - Han Gao
- School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Xin Yue
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Weiqi Bian
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Jie Mei
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214023, China.
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
7
|
Hussain F, Basu S, Heng JJH, Loo LH, Zink D. Predicting direct hepatocyte toxicity in humans by combining high-throughput imaging of HepaRG cells and machine learning-based phenotypic profiling. Arch Toxicol 2020; 94:2749-2767. [PMID: 32533217 DOI: 10.1007/s00204-020-02778-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Accurate prediction of drug- and chemical-induced hepatotoxicity remains to be a problem for pharmaceutical companies as well as other industries and regulators. The goal of the current study was to develop an in vitro/in silico method for the rapid and accurate prediction of drug- and chemical-induced hepatocyte injury in humans. HepaRG cells were employed for high-throughput imaging in combination with phenotypic profiling. A reference set of 69 drugs and chemicals was screened at a range of 7 concentrations, and the cellular response values were used for training a supervised classifier and for determining assay performance by using tenfold cross-validation. The results showed that the best performing phenotypic features were related to nuclear translocation of RELA (RELA proto-oncogene, NF-kB subunit; also known as NF-kappa B p65), DNA organization, and the F-actin cytoskeleton. Using a subset of 30 phenotypic features, direct hepatocyte toxicity in humans could be predicted with a test sensitivity, specificity and balanced accuracy of 73%, 92%, and 83%, respectively. The method was applied to another set of 26 drugs and chemicals with unclear annotation and their hepatocyte toxicity in humans was predicted. The results also revealed that the identified discriminative phenotypic changes were related to cell death and cellular senescence. Whereas cell death-related endpoints are widely applied in in vitro toxicology, cellular senescence-related endpoints are not, although cellular senescence can be induced by various drugs and other small molecule compounds and plays an important role in liver injury and disease. These findings show how phenotypic profiling can reveal unexpected chemical-induced mechanisms in toxicology.
Collapse
Affiliation(s)
- Faezah Hussain
- NanoBio Lab and Institute of Bioengineering and Nanotechnology (IBN), 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Sreetama Basu
- Bioinformatics Institute, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Javen Jun Hao Heng
- NanoBio Lab and Institute of Bioengineering and Nanotechnology (IBN), 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Lit-Hsin Loo
- Bioinformatics Institute, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore. .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Daniele Zink
- NanoBio Lab and Institute of Bioengineering and Nanotechnology (IBN), 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore.
| |
Collapse
|
8
|
Huang S, Ju W, Zhu Z, Han M, Sun C, Tang Y, Hou Y, Zhang Z, Yang J, Zhang Y, Wang L, Lin F, Chen H, Xie R, Zhu C, Wang D, Wu L, Zhao Q, Chen M, Zhou Q, Guo Z, He X. Comprehensive and combined omics analysis reveals factors of ischemia-reperfusion injury in liver transplantation. Epigenomics 2019; 11:527-542. [PMID: 30700158 DOI: 10.2217/epi-2018-0189] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To explore molecular mechanisms underlying liver ischemia-reperfusion injury (IRI). MATERIALS & METHODS Four Gene Expression Omnibus datasets comprising liver transplantation data were collected for a comprehensive analysis. A proteomic analysis was performed and used for correlations analysis with transcriptomic. RESULTS & CONCLUSION Ten differentially expressed genes were co-upregulated in four Gene Expression Omnibus datasets, including ATF3, CCL4, DNAJB1, DUSP5, JUND, KLF6, NFKBIA, PLAUR, PPP1R15A and TNFAIP3. The combined analysis demonstrated ten coregulated genes/proteins, including HBB, HBG2, CA1, SLC4A1, PLIN2, JUNB, HBA1, MMP9, SLC2A1 and PADI4. The coregulated differentially expressed genes and coregulated genes/proteins formed a tight interaction network and could serve as the core factors underlying IRI. Comprehensive and combined omics analyses revealed key factors underlying liver IRI, and thus having potential clinical significance.
Collapse
Affiliation(s)
- Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Ming Han
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Yuchen Hou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Zhiheng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Jie Yang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Linhe Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Fanxiong Lin
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Haitian Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Rongxing Xie
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Caihui Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Qi Zhou
- Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, Guangdong 516081, PR China.,Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| |
Collapse
|
9
|
Coskun A, Baykal AT, Oztug M, Kazan D, Kaya E, Emiroglu R, Yılmaz S, Dundar HZ, Akgoz M, Berber I, Aktas H, Bilsel G, Karaosmanoglu K, Çetiner B, Arslan C, Yurtsever I, Yazıcı C. Proteomic Analysis of Liver Preservation Solutions Prior to Liver Transplantation. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164615666180905104543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective: Transplantation is the preferred treatment for patients with end-stage liver diseases. However, in clinical practice, functional preservation of the liver is a major concern before the transplantation. Although various protective solutions are used (in combination with hypothermia), the functional preservation time for liver is still limited to hours. We analyzed the preservation medium to detect the proteins released from the liver during storage period.
Material/Methods:
Samples were collected from the pre-transplant preservation mediums of 23 liver donors. For all donors, the cases involved Donation after Brain Death (DBD). 2D-PAGE and LCMSMS methodologies were used to detect the proteins and peptides from the preservation mediums.
Results:
A total of 198 proteins originating from the liver were detected.
Conclusion:
The data provide valuable insights into biomarkers that may be used to evaluate organ injury, functional status, and suitability for transplantation. Additionally, the findings could be valuable for the development of new strategies for effective preservation of solid organs prior to transplantation.
Collapse
Affiliation(s)
- Abdurrahman Coskun
- Department of Medical Biochemistry, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Merve Oztug
- TUBITAK UME (National Metrology Institute), Gebze, Turkey
| | - Dilek Kazan
- Department of Bioengineering, Engineering Faculty, Marmara University, Istanbul, Turkey
| | - Ekrem Kaya
- Department of General Surgery, School of Medicine, Uludag University, Bursa, Turkey
| | - Remzi Emiroglu
- Department of General Surgery, School of Medicine,Acibadem University, Istanbul, Turkey
| | - Sezai Yılmaz
- Department of General Surgery, School of Medicine, Inonu University, Malatya, Turkey
| | - Halit Ziya Dundar
- Department of General Surgery, School of Medicine, Uludag University, Bursa, Turkey
| | - Muslum Akgoz
- TUBITAK UME (National Metrology Institute), Gebze, Turkey
| | - Ibrahim Berber
- Department of General Surgery, School of Medicine,Acibadem University, Istanbul, Turkey
| | - Hikmet Aktas
- Vocational School of Health Services, Acibadem University Istanbul, Turkey
| | - Gokhan Bilsel
- TUBITAK UME (National Metrology Institute), Gebze, Turkey
| | - Kubra Karaosmanoglu
- Department of Bioengineering, Engineering Faculty, Marmara University, Istanbul, Turkey
| | - Banu Çetiner
- Department of Medical Biochemistry, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Cansu Arslan
- Department of Medical Biochemistry, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Ilknur Yurtsever
- Regenerative and Restorative Medicine Research Center, Medipol University, Istanbul, Turkey
| | - Cevat Yazıcı
- Department of Medical Biochemistry, School of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
10
|
Nacif LS, Kim V, Galvão F, Ono SK, Pinheiro RS, Carrilho FJ, D'Albuquerque LC. Translational medical research and liver transplantation: systematic review. Transl Gastroenterol Hepatol 2018; 3:91. [PMID: 30603727 DOI: 10.21037/tgh.2018.10.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/28/2018] [Indexed: 01/10/2023] Open
Abstract
Translational medicine has become a priority, but there is still a big difference between the arrival of new treatments and investment. Basic science should not be neglected because the translation from basic research is not sustained in the absence of basic research. The purpose of this literature review was to analyze the translational medicine in the liver transplant field: liver ischemia-reperfusion injury (IRI), immunosuppression, clinical and surgical complications, small-for-size syndrome (SFSS), rejection, and ongoing innovations (liver machine, liver preservation, artificial livers, and regenerative medicine). We performed a systematic literature review that were updated in October 2016. The searches were performed in the Cochrane Central Register of Controlled Trials and Review, PubMed/Medline, Embase, and LILACS databases. All the selected studies on the management of translational medical research in liver transplantation (LT) were analyzed. Initially the search found 773 articles. Methodological viewing and analysis of the articles, followed by the application of scientific models, including translational medicine in the liver transplant field. In conclusions, this review demonstrates the application of scientific research with translation medical benefits regarding the LT. The literature has a great tendency, improvements and investments in the study of translational medicine in LT. Innovative studies and technologies from basic science help to clarify clinical doubts. Moreover, evidence increases the importance of scientific research in quality of clinical practice care.
Collapse
Affiliation(s)
- Lucas Souto Nacif
- Disciplina de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Vera Kim
- Disciplina de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Flavio Galvão
- Disciplina de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Suzane Kioko Ono
- Disciplina de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Rafael Soares Pinheiro
- Disciplina de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Flair José Carrilho
- Disciplina de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Luiz Carneiro D'Albuquerque
- Disciplina de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Hwang SY, Choi JK. Simultaneous Detection of Phosphoproteins and Total Proteins in SDS-PAGE Using Calcon. ANAL SCI 2018; 34:1427-1432. [PMID: 30224566 DOI: 10.2116/analsci.18p298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel fluorescent staining protocol to detect phosphoproteins in sodium dodecyl sulfate-polyacrylamide gels using a fluorescence sensor, 1-(2-hydroxy-1-naphthylazo)-2-naphthol-4-sulfonic acid sodium salt (Calcon), was developed. This method yields results within 135 min, with the sensitivities of 15 ng of α-casein and β-casein, and 62.5 ng of κ-casein, respectively. Since non-phosphoproteins have shown negative signals that are distinctly different from positive signals of phosphoproteins, this detection method allows one to monitor phosphoproteins with high specificity. Furthermore, a total protein profile can be achieved before a destaining step using a scanner with rapid and low-cost without further total protein staining.
Collapse
Affiliation(s)
- Sun-Young Hwang
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University
| | - Jung-Kap Choi
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University
| |
Collapse
|
12
|
Gupta NA, Kolachala VL, Jiang R, Abramowsky C, Shenoi A, Kosters A, Pavuluri H, Anania F, Kirk AD. Mitigation of autophagy ameliorates hepatocellular damage following ischemia-reperfusion injury in murine steatotic liver. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1088-99. [PMID: 25258410 PMCID: PMC4254956 DOI: 10.1152/ajpgi.00210.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ischemia-reperfusion injury (IRI) is a common clinical consequence of hepatic surgery, cardiogenic shock, and liver transplantation. A steatotic liver is particularly vulnerable to IRI, responding with extensive hepatocellular injury. Autophagy, a lysosomal pathway balancing cell survival and cell death, is engaged in IRI, although its role in IRI of a steatotic liver is unclear. The role of autophagy was investigated in high-fat diet (HFD)-fed mice exposed to IRI in vivo and in steatotic hepatocytes exposed to hypoxic IRI (HIRI) in vitro. Two inhibitors of autophagy, 3-methyladenine and bafilomycin A1, protected the steatotic hepatocytes from HIRI. Exendin 4 (Ex4), a glucagon-like peptide 1 analog, also led to suppression of autophagy, as evidenced by decreased autophagy-associated proteins [microtubule-associated protein 1A/1B-light chain 3 (LC3) II, p62, high-mobility group protein B1, beclin-1, and autophagy-related protein 7], reduced hepatocellular damage, and improved mitochondrial structure and function in HFD-fed mice exposed to IRI. Decreased autophagy was further demonstrated by reversal of a punctate pattern of LC3 and decreased autophagic flux after IRI in HFD-fed mice. Under the same conditions, the effects of Ex4 were reversed by the competitive antagonist exendin 9-39. The present study suggests that, in IRI of hepatic steatosis, treatment of hepatocytes with Ex4 mitigates autophagy, ameliorates hepatocellular injury, and preserves mitochondrial integrity. These data suggest that therapies targeting autophagy, by Ex4 treatment in particular, may ameliorate the effects of IRI in highly prevalent steatotic liver.
Collapse
Affiliation(s)
- Nitika A. Gupta
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; ,2Transplant Services, Children's Healthcare of Atlanta, Atlanta, Georgia;
| | | | - Rong Jiang
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia;
| | - Carlos Abramowsky
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; ,3Department of Pathology, Emory University School of Medicine, Atlanta, Georgia;
| | - Asha Shenoi
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; ,2Transplant Services, Children's Healthcare of Atlanta, Atlanta, Georgia;
| | - Astrid Kosters
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia;
| | - Haritha Pavuluri
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia;
| | - Frank Anania
- 4Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - Allan D. Kirk
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; ,2Transplant Services, Children's Healthcare of Atlanta, Atlanta, Georgia; ,5Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
13
|
Hwang SY, Wang X, Cong WT, Jin LT, Choi JK. Sequential double fluorescent detections of total proteins and phosphoproteins in SDS-PAGE. Electrophoresis 2014; 35:1089-98. [DOI: 10.1002/elps.201300538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Sun-Young Hwang
- College of Pharmacy & Research Institute of Drug Development; Chonnam National University; Gwangju South Korea
| | - Xu Wang
- College of Pharmacy & Research Institute of Drug Development; Chonnam National University; Gwangju South Korea
| | - Wei-Tao Cong
- School of Pharmacy; Wenzhou Medical College; Wenzhou Zhejiang China
| | - Li-Tai Jin
- School of Pharmacy; Wenzhou Medical College; Wenzhou Zhejiang China
| | - Jung-Kap Choi
- College of Pharmacy & Research Institute of Drug Development; Chonnam National University; Gwangju South Korea
| |
Collapse
|
14
|
Wang X, Hwang SY, Cong WT, Jin LT, Choi JK. Alternative visualization of SDS-PAGE separated phosphoproteins by alizarin red S-aluminum (III)-appended complex. Electrophoresis 2012; 34:235-43. [PMID: 23161533 DOI: 10.1002/elps.201200452] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 09/06/2012] [Accepted: 09/12/2012] [Indexed: 01/12/2023]
Abstract
A novel fluorescence detection system using a chemosensor for phosphoprotein in gel electrophoretic analysis has been developed. The system employed the alizarin red S-aluminum (III)-appended complex as a fluorescent staining dye to perform the convenient and selective detection of phosphorylated proteins and total proteins in SDS-PAGE, respectively. Therefore, a full and selective map of proteins can be achieved in the same process without resorting to other compatible detection methods. As low as 62.5 ng of α- (seven or eight phosphates) and β-casein (five phosphates), 125 ng of ovalbumin (two phosphates), and κ-casein (one phosphate) can be detected in approximately 135 min, with the linear responses of rigorous quantitation of changes over a 125-4000 ng range. As a result, alizarin red S-aluminum (III) stain may provide a new choice for selective, economic, and convenient visualization of phosphoproteins.
Collapse
Affiliation(s)
- Xu Wang
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | | | | | | | | |
Collapse
|
15
|
Sigdel TK, Gao X, Sarwal MM. Protein and peptide biomarkers in organ transplantation. Biomark Med 2012; 6:259-71. [PMID: 22731899 DOI: 10.2217/bmm.12.29] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Organ transplantation is the optimal treatment choice for end-stage organ failure in pediatric patients. The ideal maintenance of a transplanted organ requires efficient monitoring tools and an effective individualized post-transplant treatment plan. Currently available post-transplant monitoring options are not ideal because of their invasiveness or their lack of sensitivity and specificity when providing an accurate assessment of transplant injury. Current research on proteins and peptides, including mass spectrometry-based proteomics, can identify novel surrogate protein and peptide biomarkers that can assist in monitoring the graft in order to correctly assess the status of the transplanted organ. In this article, we have critically reviewed current relevant literature to highlight the importance of protein and peptide biomarkers in the field of pediatric organ transplantation, the status of research findings in the field of protein and peptide biomarkers in different organ transplantation and factors that impact and inhibit the progression of protein biomarker discovery in the field of solid-organ transplantation in pediatrics.
Collapse
Affiliation(s)
- Tara K Sigdel
- California Pacific Medical Center - Research Institute, San Francisco, USA.
| | | | | |
Collapse
|
16
|
Lorenz O, Parzefall W, Kainzbauer E, Wimmer H, Grasl-Kraupp B, Gerner C, Schulte-Hermann R. Proteomics reveals acute pro-inflammatory and protective responses in rat Kupffer cells and hepatocytes after chemical initiation of liver cancer and after LPS and IL-6. Proteomics Clin Appl 2012; 3:947-67. [PMID: 21136998 DOI: 10.1002/prca.200800173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inflammation is a key event in the development of liver cancer. We studied early inflammatory responses of Kupffer cells (KCs) and hepatocyte (HC) after cancer initiation. The chemical carcinogen N-nitrosomorpholine (NNM) was used in a rat model. We applied a comprehensive analytical strategy including metabolic labeling, 2-D PAGE, LC-MS/MS-based spot identification and shotgun proteomics and thus determined the rates of synthesis of individual proteins, compared whole tissue with isolated constituent cells and performed in vivo to in vitro comparisons of NNM effects. NNM increased synthesis of overall and 138 individual proteins identified in HC and/or KC, indicating reprogramming of metabolism favoring protection, repair and replacement of cell constituents in HC and KC. Secretome analysis by 2-D PAGE and shotgun proteomics of HC revealed the induction of acute phase proteins, in case of KC of proteases, cytokines and chemokines, indicating inflammatory effects. All responses were induced rapidly, independently of signals from other cells, and closely mimicked the pro-inflammatory and protective effects of inflammation modulators LPS in KC and IL-6 in HC. In conclusion, the carcinogen NNM exerts pro-inflammatory effects in the liver, partially by direct activation of KC. The acute inflammation and its protective component will enhance formation, survival and proliferation of initiated cells and may therefore act synergistically with the genotoxic action of the carcinogen.
Collapse
Affiliation(s)
- Olga Lorenz
- Department of Medicine I, Division: Institute of Cancer Research, Research Unit Toxicology and Prevention, Medical University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
17
|
Tiriveedhi V, Conzen KD, Liaw-Conlin J, Upadhya G, Malone J, Townsend RR, Kerns R, Jia J, Csontos K, Ramachandran S, Mohanakumar T, Anderson CD, Chapman WC. The role of molecular chaperonins in warm ischemia and reperfusion injury in the steatotic liver: a proteomic study. BMC BIOCHEMISTRY 2012; 13:17. [PMID: 22962947 PMCID: PMC3445822 DOI: 10.1186/1471-2091-13-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 09/05/2012] [Indexed: 01/05/2023]
Abstract
BACKGROUND The molecular basis of the increased susceptibility of steatotic livers to warm ischemia/reperfusion (I/R) injury during transplantation remains undefined. Animal model for warm I/R injury was induced in obese Zucker rats. Lean Zucker rats provided controls. Two dimensional differential gel electrophoresis was performed with liver protein extracts. Protein features with significant abundance ratios (p < 0.01) between the two cohorts were selected and analyzed with HPLC/MS. Proteins were identified by Uniprot database. Interactive protein networks were generated using Ingenuity Pathway Analysis and GRANITE software. RESULTS The relative abundance of 105 proteins was observed in warm I/R injury. Functional grouping revealed four categories of importance: molecular chaperones/endoplasmic reticulum (ER) stress, oxidative stress, metabolism, and cell structure. Hypoxia up-regulated 1, calcium binding protein 1, calreticulin, heat shock protein (HSP) 60, HSP-90, and protein disulfide isomerase 3 were chaperonins significantly (p < 0.01) down-regulated and only one chaperonin, HSP-1 was significantly upregulated in steatotic liver following I/R. CONCLUSION Down-regulation of the chaperones identified in this analysis may contribute to the increased ER stress and, consequently, apoptosis and necrosis. This study provides an initial platform for future investigation of the role of chaperones and therapeutic targets for increasing the viability of steatotic liver allografts.
Collapse
Affiliation(s)
- Venkataswarup Tiriveedhi
- Department of Surgery, Washington University in St Louis, School of Medicine, St Louis, MO, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Malarkannan S, Awasthi A, Rajasekaran K, Kumar P, Schuldt KM, Bartoszek A, Manoharan N, Goldner NK, Umhoefer CM, Thakar MS. IQGAP1: a regulator of intracellular spacetime relativity. THE JOURNAL OF IMMUNOLOGY 2012; 188:2057-63. [PMID: 22345702 DOI: 10.4049/jimmunol.1102439] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activating and inhibiting receptors of lymphocytes collect valuable information about their mikròs kósmos. This information is essential to initiate or to turn off complex signaling pathways. Irrespective of these advances, our knowledge on how these intracellular activation cascades are coordinated in a spatiotemporal manner is far from complete. Among multiple explanations, the scaffolding proteins have emerged as a critical piece of this evolutionary tangram. Among many, IQGAP1 is one of the essential scaffolding proteins that coordinate multiple signaling pathways. IQGAP1 possesses multiple protein interaction motifs to achieve its scaffolding functions. Using these domains, IQGAP1 has been shown to regulate a number of essential cellular events. This includes actin polymerization, tubulin multimerization, microtubule organizing center formation, calcium/calmodulin signaling, Pak/Raf/Mek1/2-mediated Erk1/2 activation, formation of maestrosome, E-cadherin, and CD44-mediated signaling and glycogen synthase kinase-3/adenomatous polyposis coli-mediated β-catenin activation. In this review, we summarize the recent developments and exciting new findings of cellular functions of IQGAP1.
Collapse
Affiliation(s)
- Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sigdel TK, Sarwal MM. Recent advances in biomarker discovery in solid organ transplant by proteomics. Expert Rev Proteomics 2012; 8:705-15. [PMID: 22087656 DOI: 10.1586/epr.11.66] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The identification and clinical use of more sensitive and specific biomarkers in the field of solid organ transplantation is an urgent need in medicine. Solid organ transplantation has seen improvements in the short-term survival of transplanted organs due to recent advancements in immunosuppressive therapy. However, the currently available methods of allograft monitoring are not optimal. Recent advancements in assaying methods for biomolecules such as genes, mRNA and proteins have helped to identify surrogate biomarkers that can be used to monitor the transplanted organ. These high-throughput 'omic' methods can help researchers to significantly speed up the identification and the validation steps, which are crucial factors for biomarker discovery efforts. Still, the progress towards identifying more sensitive and specific biomarkers remains a great deal slower than expected. In this article, we have evaluated the current status of biomarker discovery using proteomics tools in different solid organ transplants in recent years. This article summarizes recent reports and current status, along with the hurdles in efficient biomarker discovery of protein biomarkers using proteomics approaches. Finally, we will touch upon personalized medicine as a future direction for better management of transplanted organs, and provide what we think could be a recipe for success in this field.
Collapse
Affiliation(s)
- Tara K Sigdel
- Department of Pediatrics, Stanford University Medical School, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
20
|
Ischemia-Reperfusion Injury and Ischemic-Type Biliary Lesions following Liver Transplantation. J Transplant 2012; 2012:164329. [PMID: 22530107 PMCID: PMC3316988 DOI: 10.1155/2012/164329] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion (I-R) injury after liver transplantation (LT) induces intra- and/or extrahepatic nonanastomotic ischemic-type biliary lesions (ITBLs). Subsequent bile duct stricture is a significant cause of morbidity and even mortality in patients who underwent LT. Although the pathogenesis of ITBLs is multifactorial, there are three main interconnected mechanisms responsible for their formation: cold and warm I-R injury, injury induced by cytotoxic bile salts, and immunological-mediated injury. Cold and warm ischemic insult can induce direct injury to the cholangiocytes and/or damage to the arterioles of the peribiliary vascular plexus, which in turn leads to apoptosis and necrosis of the cholangiocytes. Liver grafts from suboptimal or extended-criteria donors are more susceptible to cold and warm I-R injury and develop more easily ITBLs than normal livers. This paper, focusing on liver I-R injury, reviews the risk factors and mechanisms leading to ITBLs following LT.
Collapse
|
21
|
Watch the GAP: Emerging Roles for IQ Motif-Containing GTPase-Activating Proteins IQGAPs in Hepatocellular Carcinoma. Int J Hepatol 2012; 2012:958673. [PMID: 22973521 PMCID: PMC3438877 DOI: 10.1155/2012/958673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/25/2012] [Accepted: 08/03/2012] [Indexed: 12/12/2022] Open
Abstract
IQ motif-containing GTPase-activating proteins IQGAP1 and IQGAP2 are highly homologous multidomain scaffolding proteins. Their major function consists of integration of Rho GTPase and Ca(2+)/calmodulin signals with cell adhesive and cytoskeletal reorganizational events. Recent studies showed that they play an important role in carcinogenesis. There is growing evidence that IQGAP2 is a novel tumor suppressor counteracting the effects of IQGAP1, an oncogene, in several cancers, especially in hepatocellular carcinoma (HCC). While HCC is highly prevalent and one of the deadliest cancers worldwide, the signaling pathways involved are not fully understood and treatment of advanced disease still represents an area of high unmet medical need. This paper compiles various findings from studies in mouse models, cell lines, and patient samples that support future development of IQGAPs into new therapeutic targets. It also discusses distinct features of IQGAP2 in an attempt to provide insight into the mechanism of the seemingly paradoxical opposing roles of the two very similar IQGAP proteins in carcinogenesis.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The desire for biomarkers for diagnosis and prognosis of diseases has never been greater. With the availability of genome data and an increased availability of proteome data, the discovery of biomarkers has become increasingly feasible. This article reviews some recent applications of the many evolving 'omic technologies to organ transplantation. RECENT FINDINGS With the advancement of many high-throughput 'omic techniques such as genomics, metabolomics, antibiomics, peptidomics, and proteomics, efforts have been made to understand potential mechanisms of specific graft injuries and develop novel biomarkers for acute rejection, chronic rejection, and operational tolerance. SUMMARY The translation of potential biomarkers from the laboratory bench to the clinical bedside is not an easy task and will require the concerted effort of the immunologists, molecular biologists, transplantation specialists, geneticists, and experts in bioinformatics. Rigorous prospective validation studies will be needed using large sets of independent patient samples. The appropriate and timely exploitation of evolving 'omic technologies will lay the cornerstone for a new age of translational research for organ transplant monitoring.
Collapse
|
23
|
Sigdel TK, Klassen RB, Sarwal MM. Interpreting the proteome and peptidome in transplantation. Adv Clin Chem 2009; 47:139-69. [PMID: 19634780 DOI: 10.1016/s0065-2423(09)47006-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Publication of the human proteome has prompted efforts to develop high-throughput techniques that can catalogue and quantify proteins and peptides present in different tissue types. The field of proteomics aims to identify, quantify, analyze, and functionally define a large number of proteins in cellular processes in different disease states on a global scale. Peptidomics, a newer name in the -omics world, measures and identifies naturally occurring low molecular weight peptides, also providing an insight into enzymatic processes and molecular events occurring in the system of interest. One area of major interest is the use of proteomics to identify diagnostic and prognostic biomarkers for different diseases as well as for various clinical phenotypes in organ transplantation that can advance targeted therapy for various forms of graft injury. Outcomes in organ transplantation can be potentially improved by identifying noninvasive biomarkers that will serve as triggers that predate graft injury, and can offer a means to customize patient treatment by differentiating among causes of acute and chronic graft injury. Proteomic and peptidomic strategies can be harnessed for frequent noninvasive measurements in tissue fluids, allowing for serial monitoring of organ disease. In this review, we describe the basic techniques used in proteomic and peptidomic approaches, point out special considerations in using these methods, and discuss their applications in recently published studies in organ transplantation.
Collapse
Affiliation(s)
- Tara K Sigdel
- Department of Pediatrics-Nephrology, Stanford University Medical School, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
24
|
Xu C, Zhang X, Yu C, Lu G, Chen S, Xu L, Ding W, Shi Q, Li Y. Proteomic analysis of hepatic ischemia/reperfusion injury and ischemic preconditioning in mice revealed the protective role of ATP5beta. Proteomics 2009; 9:409-19. [PMID: 19142948 DOI: 10.1002/pmic.200800393] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic ischemia/reperfusion (I/R) injury is an inevitable consequence during liver surgery. Ischemic preconditioning (IPC) has been shown to protect the livers from I/R injury, partially mediated by preservation of hepatic ATP contents. However, the precise molecular mechanisms of these events remain poorly elucidated. In this study, liver proteomes of the mice subjected to I/R injury pretreated with or without IPC were analyzed using 2-DE combined with MALDI-TOF/TOF mass analysis. Twenty proteins showing more than 1.5-fold difference were identified in the livers upon I/R injury. Among these proteins, four proteins were further regulated by IPC when compared with nonpretreated controls. One of these proteins, ATP synthase beta subunit (ATP5beta) catalyzes the rate-limiting step of ATP formation. The expression level of ATP5beta, which was further validated by Western blot analysis, was significantly decreased upon I/R injury while turned over by IPC pretreatment. Change pattern of hepatic ATP corresponded with that of ATP5beta expression, indicating that increasing hepatic ATP5beta expression might be a reason for ATP-preserving effect of IPC. In summary, this study provided new clues for understanding the mechanisms of IPC against I/R injury. The protective role of ATP5beta might give evidences for developing new therapeutic approaches against hepatic I/R injury.
Collapse
Affiliation(s)
- Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kunimoto K, Nojima H, Yamazaki Y, Yoshikawa T, Okanoue T, Tsukita S. Involvement of IQGAP3, a regulator of Ras/ERK-related cascade, in hepatocyte proliferation in mouse liver regeneration and development. J Cell Physiol 2009; 220:621-31. [PMID: 19452445 DOI: 10.1002/jcp.21798] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The spatio-temporal regulation of hepatocyte proliferation is a critical issue in liver regeneration. Here, in normal and regenerating liver as well as in developing liver, we examined its expression/localization of IQGAP3, which was most recently reported as a Ras/Rac/Cdc42-binding proliferation factor associated with cell-cell contacts in epithelial-type cells. In parallel, the expression/localization of Rac/Cdc42-binding IQGAP1/2 was examined. IQGAP3 showed a specific expression in proliferating hepatocytes positive for the proliferating marker Ki-67, the levels of expressions of mRNAs and proteins were significantly increased in hepatocytes in liver regeneration and development. In immunofluorescence, IQGAP3 was highly enriched at cell-cell contacts of hepatocytes. IQGAP1 and IQGAP2 were exclusively expressed in Kupffer and sinusoidal endothelial cells, respectively, in normal, regenerating, and developing liver. The expression of IQGAP1, but not of IQGAP2, was increased in CCl4-induced (but not in partial hepatectomy-induced) liver regeneration. Exclusive expression/localization of IQGAP3 to hepatocytes in the liver likely reflects the specific involvement of the IQGAP3/Ras/ERK signaling cascade in hepatocyte proliferation in addition to the previously identified signaling pathways, possibly by integrating cell-cell contact-related proliferating signaling events. On the other hand, the Rac/Cdc42-binding properties of IQGAP1/2/3 may be related to the distinct modes of remodeling due to the different strategies which induced proliferation of liver cells; partial hepatectomy, CCl4 injury, or embryonic development. Thus, the functional orchestration of Ras and the Ras homologous (Rho) family proteins Rac/Cdc42 likely plays a critical role in liver regeneration and development.
Collapse
Affiliation(s)
- Koshi Kunimoto
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Kalantari F, Auguste P, Ziafazeli T, Tzimas G, Malmström L, Bioulac-Sage P, Boismenu D, Vali H, Chevet E. Proteomics analysis of liver pathological calcification suggests a role for the IQ motif containing GTPase activating protein 1 in myofibroblast function. Proteomics Clin Appl 2009; 3:307-21. [PMID: 26238749 DOI: 10.1002/prca.200780133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Indexed: 12/14/2022]
Abstract
To date the cellular and molecular mechanisms by which liver pathological calcifications occur and are regulated are poorly investigated. To study the mechanisms linked to their appearance, we performed a proteomics analysis of calcified liver samples. To this end, human liver biopsies collected in noncalcified (N), precalcified (P), and calcified (C) areas of the liver were subjected to weak ion exchange chromatography, SDS-PAGE, and LC-ESI MS/MS analyses. As we previously demonstrated that alpha-smooth muscle actin (α-SMA) expressing myofibroblasts were involved in liver pathological calcification, we performed a targeted analysis of actin cytoskeleton remodeling-related proteins. This revealed dramatic changes in protein expression patterns in the periphery of the calcified areas. More particularly, we found that IQGAP1 and IQGAP2 proteins were subjected to major expression changes. We show that IQGAP1 expression within P and C areas of the liver correlates with the high abundance of myofibroblasts and that IQGAP1 is specifically expressed in these cells. In addition, we find that IQGAP1 is part of a protein complex including β-catenin and Rac1 mainly in P and C regions of the liver. These results suggest that IQGAP1 may play a critical role in the regulation of cytoskeleton remodeling in liver myofibroblasts in response to liver injury and consequently impact on their function.
Collapse
Affiliation(s)
- Fariba Kalantari
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Patrick Auguste
- Equipe Avenir, INSERM, Bordeaux, France. .,Université Bordeaux 2, Bordeaux, France. .,Université Bordeaux 1, Talence, France.
| | - Tahereh Ziafazeli
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - George Tzimas
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Lars Malmström
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | | | - Daniel Boismenu
- Montreal Proteomics Network, McGill University, Montreal, Quebec, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Eric Chevet
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada. .,Equipe Avenir, INSERM, Bordeaux, France. .,Université Bordeaux 2, Bordeaux, France. .,Department of Surgery, McGill University, Montreal, Quebec, Canada. .,Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA. .,Montreal Proteomics Network, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
27
|
Scaloni A, Codarin E, Di Maso V, Arena S, Renzone G, Tiribelli C, Quadrifoglio F, Tell G. Modern strategies to identify new molecular targets for the treatment of liver diseases: The promising role of Proteomics and Redox Proteomics investigations. Proteomics Clin Appl 2009; 3:242-62. [DOI: 10.1002/prca.200800169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Indexed: 12/16/2022]
|
28
|
Boutros T, Nantel A, Emadali A, Tzimas G, Conzen S, Chevet E, Metrakos PP. The MAP kinase phosphatase-1 MKP-1/DUSP1 is a regulator of human liver response to transplantation. Am J Transplant 2008; 8:2558-68. [PMID: 19032224 DOI: 10.1111/j.1600-6143.2008.02420.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Orthotopic liver transplantation (OLT) continues to be the only remedy for end-stage liver disease. In an attempt to decrease the ever-widening gap between organ donor and recipient numbers, and ultimately make more livers amenable to transplantation, we characterized the healthy human liver's response to ischemia and reperfusion-induced injury during transplantation. This was carried out by transcriptional profiling using cDNA microarray to identify genes whose expression was modulated at the 1-h postreperfusion time point. We observed that the map kinase phosphatase-1/dual-specificity phosphatase-1 (MKP-1/DUSP1) mRNA was strongly and significantly upregulated. Validation of this observation was carried out using reverse transcriptase-polymerase chain reaction (RT-PCR), immunoblotting and immunohistochemistry. In addition, we characterized the signaling pathways regulating MKP-1 expression using the human hepatoma cell line HepG2. Finally, by combining MKP-1 silencing with reperfusion-associated stresses, we reveal the preferential role of this protein in attenuating the activity of the JNK and p38(MAPK) pathways, and the resulting apoptosis, making MKP-1 a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- T Boutros
- Organelle Signalling Laboratory, Department of Surgery, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The desire for biomarkers for diagnosis and prognosis of diseases has never been greater. With the availability of genome data and an increased availability of proteome data, the discovery of biomarkers has become increasingly feasible. However, the task is daunting and requires collaborations among researchers working in the fields of transplantation, immunology, genetics, molecular biology, biostatistics and bioinformatics. With the advancement of high throughput omic techniques such as genomics and proteomics (collectively known as proteogenomics), efforts have been made to develop diagnostic tools from new and to-be discovered biomarkers. Yet biomarker validation, particularly in organ transplantation, remains challenging because of the lack of a true gold standard for diagnostic categories and analytical bottlenecks that face high-throughput data deconvolution. Even though microarray technique is relatively mature, proteomics is still growing with regards to data normalization and analysis methods. Study design, sample selection and rigorous data analysis are the critical issues for biomarker discovery using high-throughput proteogenomic technologies that combine the use and strengths of both genomics and proteomics. In this review, we look into the current status and latest developments in the field of biomarker discovery using genomics and proteomics related to organ transplantation, with an emphasis on the evolution of proteomic technologies.
Collapse
Affiliation(s)
- Tara K Sigdel
- Department of Pediatrics-Nephrology, Stanford University Medical School, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
30
|
MOON KWANHOON, HOOD BRIANL, MUKHOPADHYAY PARTHA, MOHANRAJ RAJESH, ABDELMEGEED MOHAMEDA, KWON YONGIL, CONRADS THOMASP, VEENSTRA TIMOTHYD, SONG BYOUNGJOON, PACHER PAL. Oxidative inactivation of key mitochondrial proteins leads to dysfunction and injury in hepatic ischemia reperfusion. Gastroenterology 2008; 135:1344-57. [PMID: 18778711 PMCID: PMC2597302 DOI: 10.1053/j.gastro.2008.06.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 05/16/2008] [Accepted: 06/19/2008] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Ischemia-reperfusion (I/R) is a major mechanism of liver injury following hepatic surgery or transplantation. Despite numerous reports on the role of oxidative/nitrosative stress and mitochondrial dysfunction in hepatic I/R injury, the proteins that are oxidatively modified during I/R damage are poorly characterized. This study was aimed at investigating the oxidatively modified proteins underlying the mechanism for mitochondrial dysfunction in hepatic I/R injury. We also studied the effects of a superoxide dismutase mimetic/peroxynitrite scavenger metalloporphyrin (MnTMPyP) on oxidatively modified proteins and their functions. METHODS The oxidized and/or S-nitrosylated mitochondrial proteins from I/R-injured mouse livers with or without MnTMPyP pretreatment were labeled with biotin-N-maleimide, purified with streptavidin-agarose, and resolved by 2-dimensional gel electrophoresis. The identities of the oxidatively modified proteins were determined using mass spectrometric analysis. Liver histopathology, serum transaminase levels, nitrosative stress markers, and activities of oxidatively modified mitochondrial proteins were measured. RESULTS Comparative 2-dimensional gel analysis revealed markedly increased numbers of oxidized and S-nitrosylated mitochondrial proteins following hepatic I/R injury. Many key mitochondrial enzymes involved in cellular defense, fat metabolism, energy supply, and chaperones were identified as being oxidatively modified proteins. Pretreatment with MnTMPyP attenuated the I/R-induced increased serum transaminase levels, histologic damage, increased inducible nitric oxide synthase expression, and S-nitrosylation and/or nitration of various key mitochondrial proteins. MnTMPyP pretreatment also restored I/R-induced suppressed activities of mitochondrial aldehyde dehydrogenase, 3-ketoacyl-CoA thiolases, and adenosine triphosphate synthase. CONCLUSIONS These results suggest that increased nitrosative stress is critically important in promoting S-nitrosylation and nitration of various mitochondrial proteins, leading to mitochondrial dysfunction with decreased energy supply and increased hepatic injury.
Collapse
Affiliation(s)
- KWAN-HOON MOON
- Laboratories of Membrane Biochemistry and Biophysics National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410
| | - BRIAN L. HOOD
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick, MD 21702.
| | - PARTHA MUKHOPADHYAY
- Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410
| | - RAJESH MOHANRAJ
- Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410
| | - MOHAMED A. ABDELMEGEED
- Laboratories of Membrane Biochemistry and Biophysics National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410
| | - YONG-IL KWON
- Laboratories of Membrane Biochemistry and Biophysics National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410
| | - THOMAS P. CONRADS
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick, MD 21702.
| | - TIMOTHY D. VEENSTRA
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick, MD 21702.
| | - BYOUNG-JOON SONG
- Laboratories of Membrane Biochemistry and Biophysics National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410
| | - PAL PACHER
- Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410
| |
Collapse
|
31
|
Defamie V, Cursio R, Le Brigand K, Moreilhon C, Saint-Paul MC, Laurens M, Crenesse D, Cardinaud B, Auberger P, Gugenheim J, Barbry P, Mari B. Gene expression profiling of human liver transplants identifies an early transcriptional signature associated with initial poor graft function. Am J Transplant 2008; 8:1221-36. [PMID: 18522548 DOI: 10.1111/j.1600-6143.2008.02249.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Liver ischemia-reperfusion injury occurring in orthotopic liver transplantation (OLT) may be responsible for early graft failure. Molecular mechanisms underlying initial poor graft function (IPGF) have been poorly documented in human. The purpose of this study was to identify the major transcriptional alterations occurring in human livers during OLT. Twenty-one RNA extracts derived from liver transplant biopsies taken after graft reperfusion were compared with 7 RNA derived from normal control livers. Three hundred seventy-one genes were significantly modulated and classified in molecular pathways relevant to liver metabolism, inflammatory response, cell proliferation and liver protection. Grafts were then subdivided into two groups based on their peak levels of serum aspartate amino transferase within 72 h after OLT (group 1, non-IPGF: 14 patients; group 2, IPGF: 7 patients). The two corresponding data sets were compared using a supervised prediction method. A new set of genes able to correctly classify 71% of the patients was defined. These genes were functionally associated with oxidative stress, inflammation and inhibition of cell proliferation. This study provides a comprehensive picture of the transcriptional events associated with human OLT and IPGF. We anticipate that such alterations provide a framework for the elucidation of the molecular mechanisms leading to IPGF.
Collapse
Affiliation(s)
- V Defamie
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, 660, Route des Lucioles F-06560 Sophia Antipolis, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Emadali A, Metrakos PP, Kalantari F, Boutros T, Boismenu D, Chevet E. Proteomic analysis of tyrosine phosphorylation during human liver transplantation. Proteome Sci 2007; 5:1. [PMID: 17199894 PMCID: PMC1769479 DOI: 10.1186/1477-5956-5-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 01/02/2007] [Indexed: 12/31/2022] Open
Abstract
Background Ischemia-reperfusion (I/R) causes a dramatic reprogramming of cell metabolism during liver transplantation and can be linked to an alteration of the phosphorylation level of several cellular proteins. Over the past two decades, it became clear that tyrosine phosphorylation plays a pivotal role in a variety of important signalling pathways and was linked to a wide spectrum of diseases. Functional profiling of the tyrosine phosphoproteome during liver transplantation is therefore of great biological significance and is likely to lead to the identification of novel targets for drug discovery and provide a basis for novel therapeutic strategies. Results Using liver biopsies collected during the early phases of organ procurement and transplantation, we aimed at characterizing the global patterns of tyrosine phosphorylation during hepatic I/R. A proteomic approach, based on the purification of tyrosine phosphorylated proteins followed by their identification using mass spectrometry, allowed us to identify Nck-1, a SH2/SH3 adaptor, as a potential regulator of I/R injury. Using immunoblot, cell fractionation and immunohistochemistry, we demonstrate that Nck-1 phosphorylation, expression and localization were affected in liver tissue upon I/R. In addition, mass spectrometry identification of Nck-1 binding partners during the course of the transplantation also suggested a dynamic interaction between Nck-1 and actin during I/R. Conclusion Taken together, our data suggest that Nck-1 may play a role in I/R-induced actin reorganization, which was previously reported to be detrimental for the hepatocytes of the transplanted graft. Nck-1 could therefore represent a target of choice for the design of new organ preservation strategies, which could consequently help to reduce post-reperfusion liver damages and improve transplantation outcomes.
Collapse
Affiliation(s)
- Anouk Emadali
- Department of Surgery, McGill University, Montreal, Quebec, Canada
- CEA/Grenoble, Grenoble, France
| | - Peter P Metrakos
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Fariba Kalantari
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Tarek Boutros
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Daniel Boismenu
- Genome Québec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Eric Chevet
- Department of Surgery, McGill University, Montreal, Quebec, Canada
- Genome Québec Innovation Centre, McGill University, Montreal, Quebec, Canada
- Departement of Medecine, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Team AVENIR, INSERM E362, Université Bordeaux 2, Bordeaux, France
| |
Collapse
|
33
|
|
34
|
Delom F, Chevet E. Phosphoprotein analysis: from proteins to proteomes. Proteome Sci 2006; 4:15. [PMID: 16854217 PMCID: PMC1557478 DOI: 10.1186/1477-5956-4-15] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 07/19/2006] [Indexed: 12/16/2022] Open
Abstract
Characterization of protein modification by phosphorylation is one of the major tasks that have to be accomplished in the post-genomic era. Phosphorylation is a key reversible modification occurring mainly on serine, threonine and tyrosine residues that can regulate enzymatic activity, subcellular localization, complex formation and degradation of proteins. The understanding of the regulatory role played by phosphorylation begins with the discovery and identification of phosphoproteins and then by determining how, where and when these phosphorylation events take place. Because phosphorylation is a dynamic process difficult to quantify, we must at first acquire an inventory of phosphoproteins and characterize their phosphorylation sites. Several experimental strategies can be used to explore the phosphorylation status of proteins from individual moieties to phosphoproteomes. In this review, we will examine and catalogue how proteomics techniques can be used to answer specific questions related to protein phosphorylation. Hence, we will discuss the different methods for enrichment of phospho-proteins and -peptides, and then the various technologies for their identification, quantitation and validation.
Collapse
Affiliation(s)
- Frédéric Delom
- Dept of Surgery, McGill University, Montreal, Quebec, Canada
- Montreal Proteomics Network, McGill University, Montreal, Quebec, Canada
| | - Eric Chevet
- Dept of Surgery, McGill University, Montreal, Quebec, Canada
- Montreal Proteomics Network, McGill University, Montreal, Quebec, Canada
- Dept of Medicine, McGill University, Montreal, Quebec, Canada
- Dept of Anatomy, McGill University, Montreal, Quebec, Canada
| |
Collapse
|