1
|
Naplekov D, Jadeja S, Fučíková AM, Švec F, Sklenářová H, Lenčo J. Easy, Robust, and Repeatable Online Acid Cleavage of Proteins in Mobile Phase for Fast Quantitative LC-MS Bottom-Up Protein Analysis─Application for Ricin Detection. Anal Chem 2023; 95:12339-12348. [PMID: 37565982 PMCID: PMC10448442 DOI: 10.1021/acs.analchem.3c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Sample preparation involving the cleavage of proteins into peptides is the first critical step for successful bottom-up proteomics and protein analyses. Time- and labor-intensiveness are among the bottlenecks of the commonly used methods for protein sample preparation. Here, we report a fast online method for postinjection acid cleavage of proteins directly in the mobile phase typically used for LC-MS analyses in proteomics. The chemical cleavage is achieved in 0.1% formic acid within 35 s in a capillary heated to 195 °C installed upstream of the analytical column, enabling the generated peptides to be separated. The peptides generated by the optimized method covered the entire sequence except for one amino acid of trastuzumab used for the method development. The qualitative results are extraordinarily stable, even over a long period of time. Moreover, the method is also suitable for accurate and repeatable quantification. The procedure requires only one manual step, significantly decreasing sample transfer losses. To demonstrate its practical utility, we tested the method for the fast detection of ricin. Ricin can be unambiguously identified from an injection of 10 ng, and the results can be obtained within 7-8 min after receiving a suspicious sample. Because no sophisticated accessories and no additional reagents are needed, the method can be seamlessly transferred to any laboratory for high-throughput proteomic workflows.
Collapse
Affiliation(s)
- Denis
K. Naplekov
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Siddharth Jadeja
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Alena Myslivcová Fučíková
- Department
of Biology, Faculty of Science, University
of Hradec Králové, Hradecká 1285, 500 03 Hradec Králové, Czech Republic
| | - František Švec
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Hana Sklenářová
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Juraj Lenčo
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Silver Staining of 2D Electrophoresis Gels. Methods Mol Biol 2021. [PMID: 33950484 DOI: 10.1007/978-1-0716-1024-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Silver staining is used to detect proteins after electrophoretic separation on polyacrylamide gels. It combines excellent sensitivity (in the low nanogram range) with the use of very simple and cheap equipment and chemicals. For its use in proteomics, two important additional features must be considered, compatibility with mass spectrometry and quantitative response. Both features are discussed in this chapter, and optimized silver staining protocols are proposed.
Collapse
|
3
|
Lenčo J, Khalikova MA, Švec F. Dissolving Peptides in 0.1% Formic Acid Brings Risk of Artificial Formylation. J Proteome Res 2020; 19:993-999. [DOI: 10.1021/acs.jproteome.9b00823] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Juraj Lenčo
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Maria A. Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Kwak HG, Suzuki T, Dohmae N. Global mapping of post-translational modifications on histone H3 variants in mouse testes. Biochem Biophys Rep 2017; 11:1-8. [PMID: 28955761 PMCID: PMC5614684 DOI: 10.1016/j.bbrep.2017.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022] Open
Abstract
Mass spectrometry (MS)-based characterization is important in proteomic research for verification of structural features and functional understanding of gene expression. Post-translational modifications (PTMs) such as methylation and acetylation have been reported to be associated with chromatin remodeling during spermatogenesis. Although antibody- and MS-based approaches have been applied for characterization of PTMs on H3 variants during spermatogenesis, variant-specific PTMs are still underexplored. We identified several lysine modifications in H3 variants, including testis-specific histone H3 (H3t), through their successful separation with MS-based strategy, based on differences in masses, retention times, and presence of immonium ions. Besides methylation and acetylation, we detected formylation as a novel PTM on H3 variants in mouse testes. These patterns were also observed in H3t. Our data provide high-throughput structural information about PTMs on H3 variants in mouse testes and show possible applications of this strategy in future proteomic studies on histone PTMs. Various post-translational modifications in histone H3 variants were characterized in the mouse testes. We specifically identified similar modified patterns based on immonium ions. Novel modified lysines in testis-specific H3 histone, H3t, were verified. Our approach will be helpful for the discovery of other novel or specific modifications during spermatogenesis.
Collapse
Key Words
- DTT, dithiothreitol
- ESI-TRAP, electrospray TRAP
- FDR, false discovery rate
- H2SO4, sulfuric acid
- HCD, high-energy collision dissociation
- HFBA, heptafluorobutyric acid
- HPLC, high performance liquid chromatography
- ISD, in source decay
- MALDI, matrix-assisted laser desorption/ionization
- MS, mass spectrometry
- Mass spectrometry
- PTMs, post-translational modifications
- Post-translational modification
- RP, reverse phase
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- Spermatogenesis
- TCA, trichloroacetic acid
- TFA, trifluoroacetic acid
- Testis-specific H3 histone
Collapse
|
5
|
Lee S. Post-translational modification of proteins in toxicological research: focus on lysine acylation. Toxicol Res 2013; 29:81-6. [PMID: 24278632 PMCID: PMC3834447 DOI: 10.5487/tr.2013.29.2.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/03/2013] [Accepted: 06/07/2013] [Indexed: 01/01/2023] Open
Abstract
Toxicoproteomics integrates the proteomic knowledge into toxicology by enabling protein quantification in biofluids and tissues, thus taking toxicological research to the next level. Post-translational modification (PTM) alters the three-dimensional (3D) structure of proteins by covalently binding small molecules to them and therefore represents a major protein function diversification mechanism. Because of the crucial roles PTM plays in biological systems, the identification of novel PTMs and study of the role of PTMs are gaining much attention in proteomics research. Of the 300 known PTMs, protein acylation, including lysine formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, and crotonylation, regulates the crucial functions of many eukaryotic proteins involved in cellular metabolism, cell cycle, aging, growth, angiogenesis, and cancer. Here, I reviewed recent studies regarding novel types of lysine acylation, their biological functions, and their applicationsin toxicoproteomics research.
Collapse
Affiliation(s)
- Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
6
|
Edrissi B, Taghizadeh K, Dedon PC. Quantitative analysis of histone modifications: formaldehyde is a source of pathological n(6)-formyllysine that is refractory to histone deacetylases. PLoS Genet 2013; 9:e1003328. [PMID: 23468656 PMCID: PMC3585032 DOI: 10.1371/journal.pgen.1003328] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/03/2013] [Indexed: 01/07/2023] Open
Abstract
Aberrant protein modifications play an important role in the pathophysiology of many human diseases, in terms of both dysfunction of physiological modifications and the formation of pathological modifications by reaction of proteins with endogenous electrophiles. Recent studies have identified a chemical homolog of lysine acetylation, N6-formyllysine, as an abundant modification of histone and chromatin proteins, one possible source of which is the reaction of lysine with 3′-formylphosphate residues from DNA oxidation. Using a new liquid chromatography-coupled to tandem mass spectrometry method to quantify all N6-methyl-, -acetyl- and -formyl-lysine modifications, we now report that endogenous formaldehyde is a major source of N6-formyllysine and that this adduct is widespread among cellular proteins in all compartments. N6-formyllysine was evenly distributed among different classes of histone proteins from human TK6 cells at 1–4 modifications per 104 lysines, which contrasted strongly with lysine acetylation and mono-, di-, and tri-methylation levels of 1.5-380, 5-870, 0-1400, and 0-390 per 104 lysines, respectively. While isotope labeling studies revealed that lysine demethylation is not a source of N6-formyllysine in histones, formaldehyde exposure was observed to cause a dose-dependent increase in N6-formyllysine, with use of [13C,2H2]-formaldehyde revealing unchanged levels of adducts derived from endogenous sources. Inhibitors of class I and class II histone deacetylases did not affect the levels of N6-formyllysine in TK6 cells, and the class III histone deacetylase, SIRT1, had minimal activity (<10%) with a peptide substrate containing the formyl adduct. These data suggest that N6-formyllysine is refractory to removal by histone deacetylases, which supports the idea that this abundant protein modification could interfere with normal regulation of gene expression if it arises at conserved sites of physiological protein secondary modification. Oxidative stress and inflammation lead to the generation of a multitude of electrophiles in cells that in turn react with nucleophilic macromolecules such as DNA, RNA, polyunsaturated fatty acids, and proteins, leading to progression of a variety of disorders and diseases. Emerging evidence points to widespread modification of cellular proteins by N6-formylation of lysine as a result of adventitious reactions with endogenous electrophiles. N6-Formyllysine is a chemical homolog of the biologically important N6-acetyllysine and thus may interfere with acetylation signaling in cells. While N6-formyllysine adducts are now well recognized as abundant protein modifications in cells, the source of these pathological adducts remains unclear. Our previous study proposed N6-formylation of lysine in histone proteins occurred by reaction of lysine with 3′-formylphosphate residues arising from DNA oxidation. Here, we investigate additional sources as well as the fate of this abundant pathological protein modification. Our results reveal that endogenous formaldehyde is a major source of N6-formyllysine and that this adduct is widely distributed among proteins in all cell compartments. We also demonstrate for the first time that N6-formyllysine modifications do not undergo appreciable removal by histone deacetylases, which suggests that they persist in proteins and possibly interfere with the signaling functions at conserved lysine positions in histone proteins.
Collapse
Affiliation(s)
- Bahar Edrissi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Koli Taghizadeh
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
Silver staining is used to detect proteins after electrophoretic separation on polyacrylamide gels. It -combines excellent sensitivity (in the low nanogram range) with the use of very simple and cheap equipment and chemicals. For its use in proteomics, two important additional features must be considered, compatibility with mass spectrometry and quantitative response. Both features are discussed in this chapter, and optimized silver staining protocols are proposed.
Collapse
Affiliation(s)
- Thierry Rabilloud
- CEA-DSV-iRTSV/CBM and UMR CNRS-UJF 5249, CEA Grenoble, Grenoble, France.
| |
Collapse
|
8
|
Wang D, Oses-Prieto JA, Li KH, Fernandes JF, Burlingame AL, Walbot V. The male sterile 8 mutation of maize disrupts the temporal progression of the transcriptome and results in the mis-regulation of metabolic functions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:939-51. [PMID: 20626649 PMCID: PMC2974755 DOI: 10.1111/j.1365-313x.2010.04294.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Maize anther ontogeny is complex, with the expression of more than 30,000 genes over 4 days of cell proliferation, cell fate acquisition and the start of meiosis. Although many male-sterile mutants disrupt these key steps, few have been investigated in detail. The terminal phenotypes of Zea mays (maize) male sterile 8 (ms8) are small anthers exhibiting meiotic failure. Here, we document much earlier defects: ms8 epidermal cells are normal in number but fail to elongate, and there are fewer, larger tapetal cells that retain, rather than secrete, their contents. ms8 meiocytes separate early, have extra space between them, occupied by excess callose, and the meiotic dyads abort. Thousands of transcriptome changes occur in ms8, including ectopic activation of genes not expressed in fertile siblings, failure to express some genes, differential expression compared with fertile siblings and about 40% of the differentially expressed transcripts appear precociously. There is a high correlation between mRNA accumulation assessed by microarray hybridization and quantitative real-time reverse transcriptase polymerase chain reaction. Sixty-three differentially expressed proteins were identified after two-dimensional gel electrophoresis followed by liquid chromatography tandem mass spectroscopy, including those involved in metabolism, plasmodesmatal remodeling and cell division. The majority of these were not identified by differential RNA expression, demonstrating the importance of proteomics in defining developmental mutants.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305-5020
| | - Juan A. Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA,94143
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA,94143
| | - John F. Fernandes
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305-5020
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA,94143
| | - Virginia Walbot
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305-5020
| |
Collapse
|
9
|
Pink M, Verma N, Rettenmeier AW, Schmitz-Spanke S. CBB staining protocol with higher sensitivity and mass spectrometric compatibility. Electrophoresis 2010; 31:593-8. [PMID: 20162584 DOI: 10.1002/elps.200900481] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Various CBB-based methods for staining proteins separated by 2-D gel electrophoresis were compared with regard to sensitivity and resolution. A modified Kang's CBB staining protocol, which we have modified, includes phosphoric acid in a concentration of 8% instead of the original 2%. This proved to be the best approach. Protein amounts as low as 2 ng and approximately 2300 spots in the gel can be detected by employing this protocol. The modified procedure takes less time to carry out. Moreover, this practice is more sensitive and resolves more protein spots than most protocols reported to date and is compatible with subsequent mass spectrometric analysis.
Collapse
Affiliation(s)
- Mario Pink
- Institute of Hygiene and Occupational Medicine, University Hospital Essen, D-45122 Essen, Germany
| | | | | | | |
Collapse
|
10
|
Rabilloud T, Vaezzadeh AR, Potier N, Lelong C, Leize-Wagner E, Chevallet M. Power and limitations of electrophoretic separations in proteomics strategies. MASS SPECTROMETRY REVIEWS 2009; 28:816-843. [PMID: 19072760 DOI: 10.1002/mas.20204] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proteomics can be defined as the large-scale analysis of proteins. Due to the complexity of biological systems, it is required to concatenate various separation techniques prior to mass spectrometry. These techniques, dealing with proteins or peptides, can rely on chromatography or electrophoresis. In this review, the electrophoretic techniques are under scrutiny. Their principles are recalled, and their applications for peptide and protein separations are presented and critically discussed. In addition, the features that are specific to gel electrophoresis and that interplay with mass spectrometry (i.e., protein detection after electrophoresis, and the process leading from a gel piece to a solution of peptides) are also discussed.
Collapse
|
11
|
LeRoy G, Weston JT, Zee BM, Young NL, Plazas-Mayorca MD, Garcia BA. Heterochromatin protein 1 is extensively decorated with histone code-like post-translational modifications. Mol Cell Proteomics 2009; 8:2432-42. [PMID: 19567367 DOI: 10.1074/mcp.m900160-mcp200] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Heterochromatin protein 1 (HP1) family members (alpha, beta, and gamma) bind histone H3 methylated at Lys-9, leading to gene silencing and heterochromatin formation. Several previous reports have suggested that HP1s are post-translationally modified, yet sites of modification have not yet been exhaustively determined. Here we perform the first comprehensive proteomic analysis of all HP1 isoforms using tandem mass spectrometry. Our data reveal that all HP1 isoforms are highly modified in a manner analogous to histones including phosphorylation, acetylation, methylation, and formylation, including several sites having multiple different types of modifications. Additionally, many of these modifications are found in both the chromo- and chromoshadow domains, suggesting that they may have an important role in modulating HP1 interactions or functions. These studies are the first to systematically map the abundant sites of covalent modifications on HP1 isoforms and provide the foundation for future investigations to test whether these modifications are essential in heterochromatin maintenance or other nuclear processes.
Collapse
Affiliation(s)
- Gary LeRoy
- Department Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Silver staining detects proteins after electrophoretic separation on polyacrylamide gels. Its main positive features are its excellent sensitivity (in the low nanogram range) and the use of very simple and cheap equipment and chemicals. The sequential phases of silver staining are protein fixation, then sensitization, then silver impregnation, and finally image development. Several variants of silver staining are described here, which can be completed in a time range from 2 h to 1 day after the end of the electrophoretic separation. Once completed, the stain is stable for several weeks.
Collapse
|
13
|
Jin LT, Li XK, Cong WT, Hwang SY, Choi JK. Previsible silver staining of protein in electrophoresis gels with mass spectrometry compatibility. Anal Biochem 2008; 383:137-43. [DOI: 10.1016/j.ab.2008.04.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 11/25/2022]
|
14
|
Chevallet M, Luche S, Diemer H, Strub JM, Van Dorsselaer A, Rabilloud T. Sweet silver: A formaldehyde-free silver staining using aldoses as developing agents, with enhanced compatibility with mass spectrometry. Proteomics 2008; 8:4853-61. [DOI: 10.1002/pmic.200800321] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Gharib M, Marcantonio M, Lehmann SG, Courcelles M, Meloche S, Verreault A, Thibault P. Artifactual sulfation of silver-stained proteins: implications for the assignment of phosphorylation and sulfation sites. Mol Cell Proteomics 2008; 8:506-18. [PMID: 18936056 DOI: 10.1074/mcp.m800327-mcp200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfation and phosphorylation are post-translational modifications imparting an isobaric 80-Da addition on the side chain of serine, threonine, or tyrosine residues. These two post-translational modifications are often difficult to distinguish because of their similar MS fragmentation patterns. Targeted MS identification of these modifications in specific proteins commonly relies on their prior separation using gel electrophoresis and silver staining. In the present investigation, we report a potential pitfall in the interpretation of these modifications from silver-stained gels due to artifactual sulfation of serine, threonine, and tyrosine residues by sodium thiosulfate, a commonly used reagent that catalyzes the formation of metallic silver deposits onto proteins. Detailed MS analyses of gel-separated protein standards and Escherichia coli cell extracts indicated that several serine, threonine, and tyrosine residues were sulfated using silver staining protocols but not following Coomassie Blue staining. Sodium thiosulfate was identified as the reagent leading to this unexpected side reaction, and the degree of sulfation was correlated with increasing concentrations of thiosulfate up to 0.02%, which is typically used for silver staining. The significance of this artifact is discussed in the broader context of sulfation and phosphorylation site identification from in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Marlene Gharib
- Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Na S, Jeong J, Park H, Lee KJ, Paek E. Unrestrictive identification of multiple post-translational modifications from tandem mass spectrometry using an error-tolerant algorithm based on an extended sequence tag approach. Mol Cell Proteomics 2008; 7:2452-63. [PMID: 18701446 DOI: 10.1074/mcp.m800101-mcp200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Identification of post-translational modifications (PTMs) is important to understanding the biological functions of proteins. MS/MS is a useful tool to identify PTMs. Most existing search tools are restricted to take only a few types of PTMs as input. Here we describe a new algorithm, called MOD(i) (pronounced "mod eye"), that rapidly searches for all known types of PTMs at once without limiting a multitude of modified sites in a peptide. MOD(i) introduces the notion of a tag chain, a combination structure made from multiple sequence tags, that effectively localizes modified regions within a spectrum and overcomes de novo sequencing errors common in tag-based approaches. MOD(i) showed its performance competence by identifying various types of PTMs in analysis of PTM-rich proteins such as glyceraldehyde-3-phosphate dehydrogenase and lens protein. We demonstrated that MOD(i) innovatively manages the computational complexity of identifying multiple PTMs in a peptide, which may exist in a greater variety than usually expected. In addition, it is suggested that MOD(i) has great potential to discover novel modifications.
Collapse
Affiliation(s)
- Seungjin Na
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, 130-743, Korea
| | | | | | | | | |
Collapse
|
17
|
Jung SY, Li Y, Wang Y, Chen Y, Zhao Y, Qin J. Complications in the assignment of 14 and 28 Da mass shift detected by mass spectrometry as in vivo methylation from endogenous proteins. Anal Chem 2008; 80:1721-9. [PMID: 18247584 DOI: 10.1021/ac7021025] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Identification of protein methylation sites typically starts with database searching of MS/MS spectra of proteolytic digest of the target protein by allowing addition of 14 and 28 Da in the selected amino acid residues that can be methylated. Despite the progress in our understanding of lysine and arginine methylation, substrates and functions of protein methylation at other amino acid residues remain unknown. Here we report the analysis of protein methylation for p53, SMC3, iNOS, and MeCP2. We found that a large number of peptides can be modified on the lysine, arginine, histidine, and glutamic acid residues with a mass increase of 14 or 28 Da, consistent with methylation. Surprisingly, a majority of which did not demonstrate a corresponding mass shift when cells were cultured with isotope-labeled methionine, a precursor for the synthesis of S-adenosyl-l-methionine (SAM), which is the most commonly used methyl donor for protein methylation. These results suggest the possibility of either exogenous protein methylation during sample handling and processing for mass spectrometry or the existence of SAM-independent pathways for protein methylation. Our study found a high occurrence of protein methylation from SDS-PAGE isolated endogenous proteins and identified complications for assigning such modifications as in vivo methylation. This study provides a cautionary note for solely relying on mass shift for mass spectrometric identification of protein methylation and highlights the importance of in vivo isotope labeling as a necessary validation method.
Collapse
Affiliation(s)
- Sung Yun Jung
- Center for Molecular Discovery, Verna and Mars McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
18
|
Wisniewski JR, Zougman A, Mann M. Nepsilon-formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucleic Acids Res 2007; 36:570-7. [PMID: 18056081 PMCID: PMC2241850 DOI: 10.1093/nar/gkm1057] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Post-translational modification of histones and other chromosomal proteins regulates chromatin conformation and gene activity. Methylation and acetylation of lysyl residues are among the most frequently described modifications in these proteins. Whereas these modifications have been studied in detail, very little is known about a recently discovered chemical modification, the N(epsilon)-lysine formylation, in histones and other nuclear proteins. Here we mapped, for the first time, the sites of lysine formylation in histones and several other nuclear proteins. We found that core and linker histones are formylated at multiple lysyl residues located both in the tails and globular domains of histones. In core histones, formylation was found at lysyl residues known to be involved in organization of nucleosomal particles that are frequently acetylated and methylated. In linker histones and high mobility group proteins, multiple formylation sites were mapped to residues with important role in DNA binding. N(epsilon)-lysine formylation in chromosomal proteins is relatively abundant, suggesting that it may interfere with epigenetic mechanisms governing chromatin function, which could lead to deregulation of the cell and disease.
Collapse
Affiliation(s)
- Jacek R Wisniewski
- Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|