1
|
Barry CP, Gillane R, Talbo GH, Plan M, Palfreyman R, Haber-Stuk AK, Power J, Nielsen LK, Marcellin E. Multi-omic characterisation of Streptomyces hygroscopicus NRRL 30439: detailed assessment of its secondary metabolic potential. Mol Omics 2022; 18:226-236. [PMID: 34989730 DOI: 10.1039/d1mo00150g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The emergence of multidrug-resistant pathogenic bacteria creates a demand for novel antibiotics with distinct mechanisms of action. Advances in next-generation genome sequencing promised a paradigm shift in the quest to find new bioactive secondary metabolites. Genome mining has proven successful for predicting putative biosynthetic elements in secondary metabolite superproducers such as Streptomycetes. However, genome mining approaches do not inform whether biosynthetic gene clusters are dormant or active under given culture conditions. Here we show that using a multi-omics approach in combination with antiSMASH, it is possible to assess the secondary metabolic potential of a Streptomyces strain capable of producing mannopeptimycin, an important cyclic peptide effective against Gram-positive infections. The genome of Streptomyces hygroscopicus NRRL 30439 was first sequenced using PacBio RSII to obtain a closed genome. A chemically defined medium was then used to elicit a nutrient stress response in S. hygroscopicus NRRL 30439. Detailed extracellular metabolomics and intracellular proteomics were used to profile and segregate primary and secondary metabolism. Our results demonstrate that the combination of genomics, proteomics and metabolomics enables rapid evaluation of a strain's performance in bioreactors for industrial production of secondary metabolites.
Collapse
Affiliation(s)
- Craig P Barry
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia.
| | - Rosemary Gillane
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia.
| | - Gert H Talbo
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia. .,The Queensland Node of Metabolomics Australia, AIBN, The University of Queensland, 4072 St. Lucia, Australia
| | - Manual Plan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia. .,The Queensland Node of Metabolomics Australia, AIBN, The University of Queensland, 4072 St. Lucia, Australia
| | - Robin Palfreyman
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia. .,The Queensland Node of Metabolomics Australia, AIBN, The University of Queensland, 4072 St. Lucia, Australia
| | | | - John Power
- Zoetis, 333 Portage Street, Kalamazoo, MI 49007, USA
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia. .,The Queensland Node of Metabolomics Australia, AIBN, The University of Queensland, 4072 St. Lucia, Australia.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia. .,The Queensland Node of Metabolomics Australia, AIBN, The University of Queensland, 4072 St. Lucia, Australia
| |
Collapse
|
2
|
Lee N, Hwang S, Kim W, Lee Y, Kim JH, Cho S, Kim HU, Yoon YJ, Oh MK, Palsson BO, Cho BK. Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in Streptomyces genomes. Nat Prod Rep 2021; 38:1330-1361. [PMID: 33393961 DOI: 10.1039/d0np00071j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2010 to 2020 Over the last few decades, Streptomyces have been extensively investigated for their ability to produce diverse bioactive secondary metabolites. Recent advances in Streptomyces research have been largely supported by improvements in high-throughput technology 'omics'. From genomics, numerous secondary metabolite biosynthetic gene clusters were predicted, increasing their genomic potential for novel bioactive compound discovery. Additional omics, including transcriptomics, translatomics, interactomics, proteomics and metabolomics, have been applied to obtain a system-level understanding spanning entire bioprocesses of Streptomyces, revealing highly interconnected and multi-layered regulatory networks for secondary metabolism. The comprehensive understanding derived from this systematic information accelerates the rational engineering of Streptomyces to enhance secondary metabolite production, integrated with the exploitation of the highly efficient 'Design-Build-Test-Learn' cycle in synthetic biology. In this review, we describe the current status of omics applications in Streptomyces research to better understand the organism and exploit its genetic potential for higher production of valuable secondary metabolites and novel secondary metabolite discovery.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeo Joon Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. and Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| |
Collapse
|
3
|
Morphological Differentiation of Streptomyces clavuligerus Exposed to Diverse Environmental Conditions and Its Relationship with Clavulanic Acid Biosynthesis. Processes (Basel) 2020. [DOI: 10.3390/pr8091038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Clavulanic acid (CA) is a potent inhibitor of class A β-lactamase enzymes produced by Streptomyces clavuligerus (S. clavuligerus) as a defense mechanism. Due to its industrial interest, the process optimization is under continuous investigation. This work aimed at identifying the potential relationship that might exist between S. clavuligerus ATCC 27064 morphology and CA biosynthesis. For this, modified culture conditions such as source, size, and age of inoculum, culture media, and geometry of fermentation flasks were tested. We observed that high density spore suspensions (1 × 107 spores/mL) represent the best inoculum source for S. clavuligerus cell suspension culture. Further, we studied the life cycle of S. clavuligerus in liquid medium, using optic, confocal, and electron microscopy; results allowed us to observe a potential relationship that might exist between the accumulation of CA and the morphology of disperse hyphae. Reactor geometries that increase shear stress promote smaller pellets and a quick disintegration of these in dispersed secondary mycelia, which begins the pseudosporulation process, thus easing CA accumulation. These outcomes greatly contribute to improving the understanding of antibiotic biosynthesis in the Streptomyces genus.
Collapse
|
4
|
Zhang J, Liang Q, Xu Z, Cui M, Zhang Q, Abreu S, David M, Lejeune C, Chaminade P, Virolle MJ, Xu D. The Inhibition of Antibiotic Production in Streptomyces coelicolor Over-Expressing the TetR Regulator SCO3201 IS Correlated With Changes in the Lipidome of the Strain. Front Microbiol 2020; 11:1399. [PMID: 32655536 PMCID: PMC7324645 DOI: 10.3389/fmicb.2020.01399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022] Open
Abstract
In condition of over-expression, SCO3201, a regulator of the TetR family was previously shown to strongly inhibit antibiotic production and morphological differentiation in Streptomyces coelicolor M145. In order to elucidate the molecular processes underlying this interesting, but poorly understood phenomenon, a comparative analysis of the lipidomes and transcriptomes of the strain over-expressing sco3201 and of the control strain containing the empty plasmid, was carried out. This study revealed that the strain over-expressing sco3201 had a higher triacylglycerol content and a lower phospholipids content than the control strain. This was correlated with up- and down- regulation of some genes involved in fatty acids biosynthesis (fab) and degradation (fad) respectively, indicating a direct or indirect control of the expression of these genes by SCO3201. In some instances, indirect control might involve TetR regulators, whose encoding genes present in close vicinity of genes involved in lipid metabolism, were shown to be differentially expressed in the two strains. Direct interaction of purified His6-SCO3201 with the promoter regions of four of such TetR regulators encoding genes (sco0116, sco0430, sco4167, and sco6792) was demonstrated. Furthermore, fasR (sco2386), encoding the activator of the main fatty acid biosynthetic operon, sco2386-sco2390, has been shown to be an illegitimate positive regulatory target of SCO3201. Altogether our data demonstrated that the sco3201 over-expressing strain accumulates TAG and suggested that degradation of fatty acids was reduced in this strain. This is expected to result into a reduced acetyl-CoA availability that would impair antibiotic biosynthesis either directly or indirectly.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Qiting Liang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Zhongheng Xu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Miao Cui
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Qizhong Zhang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Sonia Abreu
- Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, Châtenay-Malabry, France
| | - Michelle David
- Group “Energetic Metabolism of Streptomyces”, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, INRA, University Paris-Saclay, Gif-sur-Yvette, France
| | - Clara Lejeune
- Group “Energetic Metabolism of Streptomyces”, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, INRA, University Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Chaminade
- Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, Châtenay-Malabry, France
| | - Marie-Joelle Virolle
- Group “Energetic Metabolism of Streptomyces”, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, INRA, University Paris-Saclay, Gif-sur-Yvette, France
| | - Delin Xu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Su X, Fan X, Shao R, Guo J, Wang Y, Yang J, Yang Q, Guo L. Physiological and iTRAQ-based proteomic analyses reveal that melatonin alleviates oxidative damage in maize leaves exposed to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:263-274. [PMID: 31330393 DOI: 10.1016/j.plaphy.2019.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 05/20/2023]
Abstract
To explain the underlying mechanism of melatonin-mediated drought stress responses in maize, maize pre-treated with or without melatonin was subjected to 20% PEG nutrient solution to induce drought stress. We found that exogenous melatonin significantly improved drought tolerance, demonstrated by improved photosynthesis, reduced ROS accumulation, enhanced activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and increased content of glutathione (GSH). Comparative iTRAQ proteomic analyses revealed a higher abundance of differentially expressed proteins (DEPs) in melatonin-treated maize under drought stress for carbon fixation in photosynthetic organisms, photosynthesis, biosynthesis of amino acids, and biosynthesis of secondary metabolites, compared to untreated plants. Changes in the above molecular mechanisms could explain the melatonin-induced physiological effects associated with drought tolerance. In summary, this study provides a more integrated picture about the effects of melatonin on the physiological and molecular mechanisms in maize seedlings responding to drought stress.
Collapse
Affiliation(s)
- Xiaoyu Su
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaocong Fan
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruixin Shao
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiameng Guo
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yongchao Wang
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianping Yang
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qinghua Yang
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Lin Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Zacchetti B, Wösten HA, Claessen D. Multiscale heterogeneity in filamentous microbes. Biotechnol Adv 2018; 36:2138-2149. [DOI: 10.1016/j.biotechadv.2018.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/15/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
|
7
|
Rioseras B, Shliaha PV, Gorshkov V, Yagüe P, López-García MT, Gonzalez-Quiñonez N, Kovalchuk S, Rogowska-Wrzesinska A, Jensen ON, Manteca A. Quantitative Proteome and Phosphoproteome Analyses of Streptomyces coelicolor Reveal Proteins and Phosphoproteins Modulating Differentiation and Secondary Metabolism. Mol Cell Proteomics 2018; 17:1591-1611. [PMID: 29784711 PMCID: PMC6072539 DOI: 10.1074/mcp.ra117.000515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/15/2018] [Indexed: 02/03/2023] Open
Abstract
Streptomycetes are multicellular bacteria with complex developmental cycles. They are of biotechnological importance as they produce most bioactive compounds used in biomedicine, e.g. antibiotic, antitumoral and immunosupressor compounds. Streptomyces genomes encode many Ser/Thr/Tyr kinases, making this genus an outstanding model for the study of bacterial protein phosphorylation events. We used mass spectrometry based quantitative proteomics and phosphoproteomics to characterize bacterial differentiation and activation of secondary metabolism of Streptomyces coelicolor We identified and quantified 3461 proteins corresponding to 44.3% of the S. coelicolor proteome across three developmental stages: vegetative hypha (first mycelium); secondary metabolite producing hyphae (second mycelium); and sporulating hyphae. A total of 1350 proteins exhibited more than 2-fold expression changes during the bacterial differentiation process. These proteins include 136 regulators (transcriptional regulators, transducers, Ser/Thr/Tyr kinases, signaling proteins), as well as 542 putative proteins with no clear homology to known proteins which are likely to play a role in differentiation and secondary metabolism. Phosphoproteomics revealed 85 unique protein phosphorylation sites, 58 of them differentially phosphorylated during differentiation. Computational analysis suggested that these regulated protein phosphorylation events are implicated in important cellular processes, including cell division, differentiation, regulation of secondary metabolism, transcription, protein synthesis, protein folding and stress responses. We discovered a novel regulated phosphorylation site in the key bacterial cell division protein FtsZ (pSer319) that modulates sporulation and regulates actinorhodin antibiotic production. We conclude that manipulation of distinct protein phosphorylation events may improve secondary metabolite production in industrial streptomycetes, including the activation of cryptic pathways during the screening for new secondary metabolites from streptomycetes.
Collapse
Affiliation(s)
- Beatriz Rioseras
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Pavel V Shliaha
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Vladimir Gorshkov
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Paula Yagüe
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - María T López-García
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Nathaly Gonzalez-Quiñonez
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Sergey Kovalchuk
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Adelina Rogowska-Wrzesinska
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Ole N Jensen
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Angel Manteca
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain;
| |
Collapse
|
8
|
Zacchetti B, Smits P, Claessen D. Dynamics of Pellet Fragmentation and Aggregation in Liquid-Grown Cultures of Streptomyces lividans. Front Microbiol 2018; 9:943. [PMID: 29867851 PMCID: PMC5958208 DOI: 10.3389/fmicb.2018.00943] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
Abstract
Streptomycetes are extensively used for the production of valuable products, including various antibiotics and industrial enzymes. The preferred way to grow these bacteria in industrial settings is in large-scale fermenters. Growth of streptomycetes under these conditions is characterized by the formation of complex mycelial particles, called pellets. While the process of pellet formation is well characterized, little is known about their disintegration. Here, we use a qualitative and quantitative approach to show that pellet fragmentation in Streptomyces lividans is initiated when cultures enter the stationary phase, which coincides with a remarkable change in pellet architecture. Unlike young pellets, aging pellets have a less dense appearance and are characterized by the appearance of filaments protruding from their outer edges. These morphological changes are accompanied by a dramatic increase in the number of mycelial fragments in the culture broth. In the presence of fresh nutrients, these fragments are able to aggregate with other small fragments, but not with disintegrating pellets, to form new mycelial particles. Altogether, our work indicates that fragmentation might represent an escape mechanism from the environmental stress caused by nutrient scarcity, with striking similarities to the disassembly of bacterial biofilms.
Collapse
Affiliation(s)
- Boris Zacchetti
- Microbial Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Paul Smits
- Microbial Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Dennis Claessen
- Microbial Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
9
|
Robertsen HL, Weber T, Kim HU, Lee SY. Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production. Biotechnol J 2017; 13. [DOI: 10.1002/biot.201700465] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/20/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Helene Lunde Robertsen
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Korea Advanced Institute of Science and Technology (KAIST); Yuseong-gu Daejeon 306-701 Republic of Korea
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Korea Advanced Institute of Science and Technology (KAIST); Yuseong-gu Daejeon 306-701 Republic of Korea
| |
Collapse
|
10
|
Filippova SN, Vinogradova KA. Programmed cell death as one of the stages of streptomycete differentiation. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717040075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Millan-Oropeza A, Henry C, Blein-Nicolas M, Aubert-Frambourg A, Moussa F, Bleton J, Virolle MJ. Quantitative Proteomics Analysis Confirmed Oxidative Metabolism Predominates in Streptomyces coelicolor versus Glycolytic Metabolism in Streptomyces lividans. J Proteome Res 2017; 16:2597-2613. [DOI: 10.1021/acs.jproteome.7b00163] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aaron Millan-Oropeza
- Institute
for
Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud,
Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Céline Henry
- Micalis Institute,
INRA, PAPPSO, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Mélisande Blein-Nicolas
- Génétique
Quantitative et Évolution (GQE) - Le Moulon, INRA, Univ Paris-Sud,
CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France
| | - Anne Aubert-Frambourg
- Micalis Institute,
INRA, PAPPSO, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Fathi Moussa
- Lip(Sys)2, LETIAM (formerly included in
EA4041 Groupe de Chimie Analytique
de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, IUT
d’Orsay, Plateau de Moulon, F-91400 Orsay, France
| | - Jean Bleton
- Lip(Sys)2, LETIAM (formerly included in
EA4041 Groupe de Chimie Analytique
de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, IUT
d’Orsay, Plateau de Moulon, F-91400 Orsay, France
| | - Marie-Jöelle Virolle
- Institute
for
Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud,
Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
12
|
Subcompartmentalization by cross-membranes during early growth of Streptomyces hyphae. Nat Commun 2016; 7:12467. [PMID: 27514833 PMCID: PMC4990651 DOI: 10.1038/ncomms12467] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 07/05/2016] [Indexed: 12/02/2022] Open
Abstract
Bacteria of the genus Streptomyces are a model system for bacterial multicellularity. Their mycelial life style involves the formation of long multinucleated hyphae during vegetative growth, with occasional cross-walls separating long compartments. Reproduction occurs by specialized aerial hyphae, which differentiate into chains of uninucleoid spores. While the tubulin-like FtsZ protein is required for the formation of all peptidoglycan-based septa in Streptomyces, canonical divisome-dependent cell division only occurs during sporulation. Here we report extensive subcompartmentalization in young vegetative hyphae of Streptomyces coelicolor, whereby 1 μm compartments are formed by nucleic acid stain-impermeable barriers. These barriers possess the permeability properties of membranes and at least some of them are cross-membranes without detectable peptidoglycan. Z-ladders form during the early growth, but cross-membrane formation does not depend on FtsZ. Thus, a new level of hyphal organization is presented involving unprecedented high-frequency compartmentalization, which changes the old dogma that Streptomyces vegetative hyphae have scarce compartmentalization. Bacteria of the genus Streptomyces form cellular filaments (hyphae) in which sporadic peptidoglycan cell walls separate multinucleate compartments. Here, Yagüe et al. show that young hyphae are further compartmentalized by cross-membranes lacking detectable peptidoglycan.
Collapse
|
13
|
Ferguson NL, Peña-Castillo L, Moore MA, Bignell DRD, Tahlan K. Proteomics analysis of global regulatory cascades involved in clavulanic acid production and morphological development in Streptomyces clavuligerus. ACTA ACUST UNITED AC 2016; 43:537-55. [DOI: 10.1007/s10295-016-1733-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/02/2016] [Indexed: 12/11/2022]
Abstract
Abstract
The genus Streptomyces comprises bacteria that undergo a complex developmental life cycle and produce many metabolites of importance to industry and medicine. Streptomyces clavuligerus produces the β-lactamase inhibitor clavulanic acid, which is used in combination with β-lactam antibiotics to treat certain β-lactam resistant bacterial infections. Many aspects of how clavulanic acid production is globally regulated in S. clavuligerus still remains unknown. We conducted comparative proteomics analysis using the wild type strain of S. clavuligerus and two mutants (ΔbldA and ΔbldG), which are defective in global regulators and vary in their ability to produce clavulanic acid. Approximately 33.5 % of the predicted S. clavuligerus proteome was detected and 192 known or putative regulatory proteins showed statistically differential expression levels in pairwise comparisons. Interestingly, the expression of many proteins whose corresponding genes contain TTA codons (predicted to require the bldA tRNA for translation) was unaffected in the bldA mutant.
Collapse
Affiliation(s)
- Nicole L Ferguson
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| | - Lourdes Peña-Castillo
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
- grid.25055.37 0000000091306822 Department of Computer Science Memorial University of Newfoundland A1B 3X5 St. John’s NL Canada
| | - Marcus A Moore
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| | - Dawn R D Bignell
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| | - Kapil Tahlan
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| |
Collapse
|
14
|
Zhang Y, Li Y, Zhang Y, Wang Z, Zhao M, Su N, Zhang T, Chen L, Wei W, Luo J, Zhou Y, Xu Y, Xu P, Li W, Tao Y. Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic Nocardiopsis xinjiangensis. J Proteome Res 2015; 15:68-85. [DOI: 10.1021/acs.jproteome.5b00526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yao Zhang
- Institute
of Microbiology, Chinese Academy of Science, Beijing 100101, China
- State
Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant
Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou 510275, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanchang Li
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Yongguang Zhang
- Key
Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, China
| | - Zhiqiang Wang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry
of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Mingzhi Zhao
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Na Su
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Tao Zhang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Lingsheng Chen
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- State
Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, P. R. China
| | - Wei Wei
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Jing Luo
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Key
Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxia Zhou
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Hebei
Province Key Lab of Research and Application on Microbial Diversity,
College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yongru Xu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- State
Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, P. R. China
| | - Ping Xu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry
of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
- Anhui Medical University, Hefei, Anhui 230032, P. R. China
| | - Wenjun Li
- State
Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant
Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou 510275, China
- Key
Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, China
- Key
Laboratory of Microbial Diversity in Southwest China, Ministry of
Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, China
| | - Yong Tao
- Institute
of Microbiology, Chinese Academy of Science, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Proteomic insights into metabolic adaptation to deletion of metE in Saccharopolyspora spinosa. Appl Microbiol Biotechnol 2015; 99:8629-41. [PMID: 26266753 DOI: 10.1007/s00253-015-6883-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/20/2015] [Accepted: 07/26/2015] [Indexed: 12/19/2022]
Abstract
Saccharopolyspora spinosa can produce spinosad as a major secondary metabolite, which is an environmentally friendly agent for insect control. Cobalamin-independent methionine synthase (MetE) is an important enzyme in methionine biosynthesis, and this enzyme is probably closely related to spinosad production. In this study, its corresponding gene metE was inactivated, which resulted in a rapid growth and glucose utilisation rate and almost loss of spinosad production. A label-free quantitative proteomics-based approach was employed to obtain insights into the mechanism by which the metabolic network adapts to the absence of MetE. A total of 1440 proteins were detected from wild-type and ΔmetE mutant strains at three time points: stationary phase of ΔmetE mutant strain (S1ΔmetE , 67 h), first stationary phase of wild-type strain (S1WT, 67 h) and second stationary phase of wild-type strain (S2WT, 100 h). Protein expression patterns were determined using an exponentially modified protein abundance index (emPAI) and analysed by comparing S1ΔmetE /S1WT and S1ΔmetE /S2WT. Results showed that differentially expressed enzymes were mainly involved in primary metabolism and genetic information processing. This study demonstrated that the role of MetE is not restricted to methionine biosynthesis but rather is involved in global metabolic regulation in S. spinosa.
Collapse
|
16
|
Romero-Rodríguez A, Robledo-Casados I, Sánchez S. An overview on transcriptional regulators in Streptomyces. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1017-39. [PMID: 26093238 DOI: 10.1016/j.bbagrm.2015.06.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
Streptomyces are Gram-positive microorganisms able to adapt and respond to different environmental conditions. It is the largest genus of Actinobacteria comprising over 900 species. During their lifetime, these microorganisms are able to differentiate, produce aerial mycelia and secondary metabolites. All of these processes are controlled by subtle and precise regulatory systems. Regulation at the transcriptional initiation level is probably the most common for metabolic adaptation in bacteria. In this mechanism, the major players are proteins named transcription factors (TFs), capable of binding DNA in order to repress or activate the transcription of specific genes. Some of the TFs exert their action just like activators or repressors, whereas others can function in both manners, depending on the target promoter. Generally, TFs achieve their effects by using one- or two-component systems, linking a specific type of environmental stimulus to a transcriptional response. After DNA sequencing, many streptomycetes have been found to have chromosomes ranging between 6 and 12Mb in size, with high GC content (around 70%). They encode for approximately 7000 to 10,000 genes, 50 to 100 pseudogenes and a large set (around 12% of the total chromosome) of regulatory genes, organized in networks, controlling gene expression in these bacteria. Among the sequenced streptomycetes reported up to now, the number of transcription factors ranges from 471 to 1101. Among these, 315 to 691 correspond to transcriptional regulators and 31 to 76 are sigma factors. The aim of this work is to give a state of the art overview on transcription factors in the genus Streptomyces.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Ivonne Robledo-Casados
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| |
Collapse
|
17
|
Hesketh A, Deery MJ, Hong HJ. High-Resolution Mass Spectrometry Based Proteomic Analysis of the Response to Vancomycin-Induced Cell Wall Stress in Streptomyces coelicolor A3(2). J Proteome Res 2015; 14:2915-28. [PMID: 25965010 DOI: 10.1021/acs.jproteome.5b00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Understanding how bacteria survive periods of cell wall stress is of fundamental interest and can help generate ideas for improved antibacterial treatments. In this study we use tandem mass tagging to characterize the proteomic response of vancomycin resistant Streptomyces coelicolor to the exposure to sublethal levels of the antibiotic. A common set of 804 proteins were identified in triplicate experiments. Contrasting changes in the abundance of proteins closely associated with the cytoplasmic membrane with those taking place in the cytosol identified aspects of protein spatial localization that are associated with the response to vancomycin. Enzymes for peptidoglycan precursor, mycothiol, ectoine and menaquinone biosynthesis together with a multisubunit nitrate reductase were recruited to the membrane following vancomycin treatment. Many proteins with regulatory functions (including sensor protein kinases) also exhibited significant changes in abundance exclusively in the membrane-associated protein fraction. Several enzymes predicted to be involved in extracellular peptidoglycan crossbridge formation became significantly depleted from the membrane. A comparison with data previously acquired on the changes in gene transcription following vancomycin treatment identified a common high-confidence set of changes in gene expression. Generalized changes in protein abundance indicate roles for proteolysis, the pentose phosphate pathway and a reorganization of amino acid biosynthesis in the stress response.
Collapse
Affiliation(s)
- Andy Hesketh
- †Department of Biochemistry, University of Cambridge, Cambridge, U.K.,‡Cambridge Systems Biology Centre, University of Cambridge, Cambridge, U.K
| | - Michael J Deery
- †Department of Biochemistry, University of Cambridge, Cambridge, U.K.,‡Cambridge Systems Biology Centre, University of Cambridge, Cambridge, U.K
| | - Hee-Jeon Hong
- †Department of Biochemistry, University of Cambridge, Cambridge, U.K
| |
Collapse
|
18
|
Yang Q, Tang S, Rang J, Zuo M, Ding X, Sun Y, Feng P, Xia L. Detection of toxin proteins from Bacillus thuringiensis strain 4.0718 by strategy of 2D-LC-MS/MS. Curr Microbiol 2014; 70:457-63. [PMID: 25477065 DOI: 10.1007/s00284-014-0747-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/29/2014] [Indexed: 11/25/2022]
Abstract
Bacillus thuringiensis is a kind of insecticidal microorganism which can produce a variety of toxin proteins, it is particularly important to find an effective strategy to identify novel toxin proteins rapidly and comprehensively with the discovery of the wild-type strains. Multi-dimensional high-performance liquid chromatography combined with mass spectrometry has become one of the main methods to detect and identify toxin proteins and proteome of B. thuringiensis. In this study, protein samples from B. thuringiensis strain 4.0718 were analyzed on the basis of two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS), and tryptic peptides of whole cell from the late sporulation phase were eluted at different concentration gradients of ammonium chloride and followed by secondary mass spectrum identification. 831 and 894 proteins were identified from two biological replicates, respectively, while 1,770 and 1,859 peptides were detected correspondingly. Among the identified proteins and peptides, 606 proteins and 1,259 peptides were detected in both replicates, which mean that 1,119 proteins and 2,370 peptides were unique to the proteome of this strain. A total of 15 toxins have been identified successfully, and seven of them were firstly discovered in B. thuringiensis strain 4.0718 that were Crystal protein (A1E259), pesticidal protein (U5KS09), Cry2Af1 (A4GVF0), Cry2Ad (Q9RM89), Cry1 (K4HMB5), Cry1Bc (Q45774), and Cry1Ga (Q45746). The proteomic strategy employed in the present study has provided quick and exhaustive identification of toxins produced by B. thuringiensis.
Collapse
Affiliation(s)
- Qi Yang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key laboratory Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China,
| | | | | | | | | | | | | | | |
Collapse
|
19
|
van Dissel D, Claessen D, van Wezel GP. Morphogenesis of Streptomyces in submerged cultures. ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:1-45. [PMID: 25131399 DOI: 10.1016/b978-0-12-800259-9.00001-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Members of the genus Streptomyces are mycelial bacteria that undergo a complex multicellular life cycle and propagate via sporulation. Streptomycetes are important industrial microorganisms, as they produce a plethora of medically relevant natural products, including the majority of clinically important antibiotics, as well as a wide range of enzymes with industrial application. While development of Streptomyces in surface-grown cultures is well studied, relatively little is known of the parameters that determine morphogenesis in submerged cultures. Here, growth is characterized by the formation of mycelial networks and pellets. From the perspective of industrial fermentations, such mycelial growth is unattractive, as it is associated with slow growth, heterogeneous cultures, and high viscosity. Here, we review the current insights into the genetic and environmental factors that determine mycelial growth and morphology in liquid-grown cultures. The genetic factors include cell-matrix proteins and extracellular polymers, morphoproteins with specific roles in liquid-culture morphogenesis, with the SsgA-like proteins as well-studied examples, and programmed cell death. Environmental factors refer in particular to those dictated by process engineering, such as growth media and reactor set-up. These insights are then integrated to provide perspectives as to how this knowledge can be applied to improve streptomycetes for industrial applications.
Collapse
Affiliation(s)
- Dino van Dissel
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
20
|
Yang Q, Ding X, Liu X, Liu S, Sun Y, Yu Z, Hu S, Rang J, He H, He L, Xia L. Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa. Microb Cell Fact 2014; 13:27. [PMID: 24555503 PMCID: PMC3936707 DOI: 10.1186/1475-2859-13-27] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 02/18/2014] [Indexed: 11/29/2022] Open
Abstract
Background Saccharopolyspora spinosa is an important producer of antibiotic spinosad with clarified biosynthesis pathway but its complex regulation networks associated with primary metabolism and secondary metabolites production almost have never been concerned or studied before. The proteomic analysis of a novel Saccharopolyspora spinosa CCTCC M206084 was performed and aimed to provide a global profile of regulatory proteins. Results Two-dimensional-liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 1090, 1166, 701, and 509 proteins from four phases respectively, i.e., the logarithmic growth phase (T1), early stationary phase (T2), late stationary phase (T3), and decline phase (T4). Among the identified proteins, 1579 were unique to the S. spinosa proteome, including almost all the enzymes for spinosad biosynthesis. Trends in protein expression over the various time phases were deduced from using the modified protein abundance index (PAI), revealed the importance of stress pathway proteins and other global regulatory network proteins during spinosad biosynthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis followed by one-dimensional LC-MS/MS identification revealed similar trend of protein expression from four phases with the results of semi-quantification by PAI. qRT-PCR analysis revealed that 6 different expressed genes showed a positive correlation between changes at translational and transcriptional expression level. Expression of three proteins that likely promote spinosad biosynthesis, namely, 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase (MHSM), glutamine synthetase (GS) and cyclic nucleotide-binding domain-containing protein (CNDP) was validated by western blot, which confirmed the results of proteomic analysis. Conclusions This study is the first systematic analysis of the S. spinosa proteome during fermentation and its valuable proteomic data of regulatory proteins may be used to enhance the production yield of spinosad in future studies.
Collapse
Affiliation(s)
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key laboratory Breeding Base of Microbial Molecular Biology, College of life Science, Hunan Normal University, Changsha 410081, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hwang KS, Kim HU, Charusanti P, Palsson BØ, Lee SY. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 2013; 32:255-68. [PMID: 24189093 DOI: 10.1016/j.biotechadv.2013.10.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/20/2013] [Accepted: 10/25/2013] [Indexed: 11/29/2022]
Abstract
Streptomyces species continue to attract attention as a source of novel medicinal compounds. Despite a long history of studies on these microorganisms, they still have many biochemical mysteries to be elucidated. Investigations of novel secondary metabolites and their biosynthetic gene clusters have been more systematized with high-throughput techniques through inspections of correlations among components of the primary and secondary metabolisms at the genome scale. Moreover, up-to-date information on the genome of Streptomyces species with emphasis on their secondary metabolism has been collected in the form of databases and knowledgebases, providing predictive information and enabling one to explore experimentally unrecognized biological spaces of secondary metabolism. Herein, we review recent trends in the systems biology and biotechnology of Streptomyces species.
Collapse
Affiliation(s)
- Kyu-Sang Hwang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Hyun Uk Kim
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Pep Charusanti
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Bernhard Ø Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Sang Yup Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
22
|
SdrA, a new DeoR family regulator involved in Streptomyces avermitilis morphological development and antibiotic production. Appl Environ Microbiol 2013; 79:7916-21. [PMID: 24123736 DOI: 10.1128/aem.02843-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The SAV3339 (SdrA) protein of Streptomyces avermitilis, a member of the DeoR family of regulators, was assessed to determine its in vivo function by gene knockdown through the use of cis-encoded noncoding RNA and knockout of the sdrA gene. These analyses revealed that SdrA represents another class of Streptomyces regulator that controls morphological development and antibiotic production.
Collapse
|
23
|
Yagüe P, López-García MT, Rioseras B, Sánchez J, Manteca A. Pre-sporulation stages of Streptomyces differentiation: state-of-the-art and future perspectives. FEMS Microbiol Lett 2013; 342:79-88. [PMID: 23496097 DOI: 10.1111/1574-6968.12128] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/30/2022] Open
Abstract
Streptomycetes comprise very important industrial bacteria, producing two-thirds of all clinically relevant secondary metabolites. They are mycelial microorganisms with complex developmental cycles that include programmed cell death (PCD) and sporulation. Industrial fermentations are usually performed in liquid cultures (large bioreactors), conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that there was no differentiation. In this work, we review the current knowledge on Streptomyces pre-sporulation stages of Streptomyces differentiation.
Collapse
Affiliation(s)
- Paula Yagüe
- Área de Microbiología, Departamento de Biología Funcional, and IUBA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
24
|
Yagüe P, Rodríguez-García A, López-García MT, Martín JF, Rioseras B, Sánchez J, Manteca A. Transcriptomic analysis of Streptomyces coelicolor differentiation in solid sporulating cultures: first compartmentalized and second multinucleated mycelia have different and distinctive transcriptomes. PLoS One 2013; 8:e60665. [PMID: 23555999 PMCID: PMC3610822 DOI: 10.1371/journal.pone.0060665] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/01/2013] [Indexed: 11/18/2022] Open
Abstract
Streptomycetes are very important industrial bacteria, which produce two thirds of all clinically relevant secondary metabolites. They have a complex developmental-cycle in which an early compartmentalized mycelium (MI) differentiates to a multinucleated mycelium (MII) that grows inside the culture medium (substrate mycelium) until it starts to growth into the air (aerial mycelium) and ends up forming spores. Streptomyces developmental studies have focused mainly on the later stages of MII differentiation (aerial mycelium and sporulation), with regulation of pre-sporulation stages (MI/MII transition) essentially unknown. This work represents the first study of the Streptomyces MI transcriptome, analyzing how it differs from the MII transcriptome. We have used a very conservative experimental approach to fractionate MI from MII and quantify gene expressions. The expression of well characterized key developmental/metabolic genes involved in bioactive compound production (actinorhodin, undecylprodigiosin, calcium-dependent antibiotic, cpk, geosmin) or hydrophobic cover formation-sporulation (bld, whi, wbl, rdl, chp, ram) was correlated with MII differentiation. Additionally, 122 genes conserved in the Streptomyces genus, whose biological function had not been previously characterized, were found to be differentially expressed (more than 4-fold) in MI or MII. These genes encoded for putative regulatory proteins (transcriptional regulators, kinases), as well as hypothetical proteins. Knowledge about differences between the MI (vegetative) and MII (reproductive) transcriptomes represents a huge advance in Streptomyces biology that will make future experiments possible aimed at characterizing the biochemical pathways controlling pre-sporulation developmental stages and activation of secondary metabolism in Streptomyces.
Collapse
Affiliation(s)
- Paula Yagüe
- Área de Microbiología, Departamento de Biología Funcional and Instituto Universitario de Biotecnología de Asturias (IUBA), Universidad de Oviedo, Oviedo, Spain
| | | | - María T. López-García
- Área de Microbiología, Departamento de Biología Funcional and Instituto Universitario de Biotecnología de Asturias (IUBA), Universidad de Oviedo, Oviedo, Spain
| | - Juan F. Martín
- Instituto de Biotecnología de León (INBIOTEC), León, Spain
| | - Beatriz Rioseras
- Área de Microbiología, Departamento de Biología Funcional and Instituto Universitario de Biotecnología de Asturias (IUBA), Universidad de Oviedo, Oviedo, Spain
| | - Jesús Sánchez
- Área de Microbiología, Departamento de Biología Funcional and Instituto Universitario de Biotecnología de Asturias (IUBA), Universidad de Oviedo, Oviedo, Spain
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional and Instituto Universitario de Biotecnología de Asturias (IUBA), Universidad de Oviedo, Oviedo, Spain
- * E-mail:
| |
Collapse
|
25
|
Marcellin E, Mercer TR, Licona-Cassani C, Palfreyman RW, Dinger ME, Steen JA, Mattick JS, Nielsen LK. Saccharopolyspora erythraea's genome is organised in high-order transcriptional regions mediated by targeted degradation at the metabolic switch. BMC Genomics 2013; 14:15. [PMID: 23324121 PMCID: PMC3610266 DOI: 10.1186/1471-2164-14-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/20/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Actinobacteria form a major bacterial phylum that includes numerous human pathogens. Actinobacteria are primary contributors to carbon cycling and also represent a primary source of industrial high value products such as antibiotics and biopesticides. Consistent with other members of the actinobacterial phylum, Saccharopolyspora erythraea undergo a transitional switch. This switch is characterized by numerous metabolic and morphological changes. RESULTS We performed RNA sequencing to analyze the transcriptional changes that occur during growth of Saccharopolyspora erythraea in batch culture. By sequencing RNA across the fermentation time course, at a mean coverage of 4000X, we found the vast majority of genes to be prominently expressed, showing that we attained close to saturating sequencing coverage of the transcriptome. During the metabolic switch, global changes in gene expression influence the metabolic machinery of Saccharopolyspora erythraea, resetting an entirely novel gene expression program. After the switch, global changes include the broad repression of half the genes regulated by complex transcriptional mechanisms. Paralogous transposon clusters, delineate these transcriptional programs. The new transcriptional program is orchestrated by a bottleneck event during which mRNA levels are severely restricted by targeted mRNA degradation. CONCLUSIONS Our results, which attained close to saturating sequencing coverage of the transcriptome, revealed unanticipated transcriptional complexity with almost one third of transcriptional content originating from un-annotated sequences. We showed that the metabolic switch is a sophisticated mechanism of transcriptional regulation capable of resetting and re-synchronizing gene expression programs at extraordinary speed and scale.
Collapse
Affiliation(s)
- Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Strakova E, Bobek J, Zikova A, Rehulka P, Benada O, Rehulkova H, Kofronova O, Vohradsky J. Systems insight into the spore germination of Streptomyces coelicolor. J Proteome Res 2012. [PMID: 23181467 DOI: 10.1021/pr300980v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An example of bacterium, which undergoes a complex development, is the genus of Streptomyces whose importance lies in their wide capacity to produce secondary metabolites, including antibiotics. In this work, a proteomic approach was applied to the systems study of germination as a transition from dormancy to the metabolically active stage. The protein expression levels were examined throughout the germination time course, the kinetics of the accumulated and newly synthesized proteins were clustered, and proteins detected in each group were identified. Altogether, 104 2DE gel images at 13 time points, from dormant state until 5.5 h of growth, were analyzed. The mass spectrometry identified proteins were separated into functional groups and their potential roles during germination were further assessed. The results showed that the full competence of spores to effectively undergo active metabolism is derived from the sporulation step, which facilitates the rapid initiation of global protein expression during the first 10 min of cultivation. Within the first hour, the majority of proteins were synthesized. From this stage, the full capability of regulatory mechanisms to respond to environmental cues is presumed. The obtained results might also provide a data source for further investigations of the process of germination.
Collapse
Affiliation(s)
- Eva Strakova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Laboratory of Bioinformatics, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Multiple-platform data integration method with application to combined analysis of microarray and proteomic data. BMC Bioinformatics 2012. [PMID: 23198695 PMCID: PMC3770449 DOI: 10.1186/1471-2105-13-320] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background It is desirable in genomic studies to select biomarkers that differentiate between normal and diseased populations based on related data sets from different platforms, including microarray expression and proteomic data. Most recently developed integration methods focus on correlation analyses between gene and protein expression profiles. The correlation methods select biomarkers with concordant behavior across two platforms but do not directly select differentially expressed biomarkers. Other integration methods have been proposed to combine statistical evidence in terms of ranks and p-values, but they do not account for the dependency relationships among the data across platforms. Results In this paper, we propose an integration method to perform hypothesis testing and biomarkers selection based on multi-platform data sets observed from normal and diseased populations. The types of test statistics can vary across the platforms and their marginal distributions can be different. The observed test statistics are aggregated across different data platforms in a weighted scheme, where the weights take into account different variabilities possessed by test statistics. The overall decision is based on the empirical distribution of the aggregated statistic obtained through random permutations. Conclusion In both simulation studies and real biological data analyses, our proposed method of multi-platform integration has better control over false discovery rates and higher positive selection rates than the uncombined method. The proposed method is also shown to be more powerful than rank aggregation method.
Collapse
|
28
|
Gubbens J, Janus MM, Florea BI, Overkleeft HS, van Wezel GP. Identification of glucose kinase-dependent and -independent pathways for carbon control of primary metabolism, development and antibiotic production in Streptomyces coelicolor by quantitative proteomics. Mol Microbiol 2012; 86:1490-507. [PMID: 23078239 DOI: 10.1111/mmi.12072] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2012] [Indexed: 11/30/2022]
Abstract
Members of the soil-dwelling prokaryotic genus Streptomyces are indispensable for the recycling of complex polysaccharides, and produce a wide range of natural products. Nutrient availability is a major determinant for the switch to development and antibiotic production in streptomycetes. Carbon catabolite repression (CCR), a main signalling pathway underlying this phenomenon, was so far considered fully dependent on the glycolytic enzyme glucose kinase (Glk). Here we provide evidence of a novel Glk-independent pathway in Streptomyces coelicolor, using advanced proteomics that allowed the comparison of the expression of some 2000 proteins, including virtually all enzymes for central metabolism. While CCR and inducer exclusion of enzymes for primary and secondary metabolism and precursor supply for natural products is mostly mediated via Glk, enzymes for the urea cycle, as well as for biosynthesis of the γ-butyrolactone Scb1 and the responsive cryptic polyketide Cpk are subject to Glk-independent CCR. Deletion of glkA led to strong downregulation of biosynthetic proteins for prodigionins and calcium-dependent antibiotic (CDA) in mannitol-grown cultures. Repression of bldB, bldN, and its target bldM may explain the poor development of S. coelicolor on solid-grown cultures containing glucose. A new model for carbon catabolite repression in streptomycetes is presented.
Collapse
Affiliation(s)
- Jacob Gubbens
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300RA, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Richardson K, Denny R, Hughes C, Skilling J, Sikora J, Dadlez M, Manteca A, Jung HR, Jensen ON, Redeker V, Melki R, Langridge JI, Vissers JPC. A probabilistic framework for peptide and protein quantification from data-dependent and data-independent LC-MS proteomics experiments. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:468-82. [PMID: 22871168 DOI: 10.1089/omi.2012.0019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A probability-based quantification framework is presented for the calculation of relative peptide and protein abundance in label-free and label-dependent LC-MS proteomics data. The results are accompanied by credible intervals and regulation probabilities. The algorithm takes into account data uncertainties via Poisson statistics modified by a noise contribution that is determined automatically during an initial normalization stage. Protein quantification relies on assignments of component peptides to the acquired data. These assignments are generally of variable reliability and may not be present across all of the experiments comprising an analysis. It is also possible for a peptide to be identified to more than one protein in a given mixture. For these reasons the algorithm accepts a prior probability of peptide assignment for each intensity measurement. The model is constructed in such a way that outliers of any type can be automatically reweighted. Two discrete normalization methods can be employed. The first method is based on a user-defined subset of peptides, while the second method relies on the presence of a dominant background of endogenous peptides for which the concentration is assumed to be unaffected. Normalization is performed using the same computational and statistical procedures employed by the main quantification algorithm. The performance of the algorithm will be illustrated on example data sets, and its utility demonstrated for typical proteomics applications. The quantification algorithm supports relative protein quantification based on precursor and product ion intensities acquired by means of data-dependent methods, originating from all common isotopically-labeled approaches, as well as label-free ion intensity-based data-independent methods.
Collapse
|
30
|
Pottiez G, Wiederin J, Fox HS, Ciborowski P. Comparison of 4-plex to 8-plex iTRAQ quantitative measurements of proteins in human plasma samples. J Proteome Res 2012; 11:3774-81. [PMID: 22594965 PMCID: PMC3390908 DOI: 10.1021/pr300414z] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Methods for isobaric tagging of peptides, iTRAQ or TMT,
are commonly used platforms in mass spectrometry based quantitative
proteomics. These two methods are very often used to quantitate proteins
in complex samples, e.g., serum/plasma or CSF supporting biomarker
discovery studies. The success of these studies depends on multiple
factors, including the accuracy of ratios of reporter ions reflecting
quantitative changes of proteins. Because reporter ions are generated
during peptide fragmentation, the differences of chemical structure
of iTRAQ balance groups may have an effect on how efficiently these
groups are fragmented and thus how differences in protein expression
will be measured. Because 4-plex and 8-plex iTRAQ reagents do have
different structures of balanced groups, it has been postulated that
indeed differences in protein identification and quantitation exist
between these two reagents. In this study we controlled the ratios
of tagged samples and compared quantitation of proteins using 4-plex
versus 8-plex reagents in the context of a highly complex sample of
human plasma using ABSciex 4800 MALDI-TOF/TOF mass spectrometer and
ProteinPilot 4.0 software. We observed that 8-plex tagging provides
more consistent ratios than 4-plex without compromising protein identification,
thus allowing investigation of eight experimental conditions in one
analytical experiment.
Collapse
Affiliation(s)
- Gwenael Pottiez
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5800, USA
| | | | | | | |
Collapse
|
31
|
Martín JF, Liras P. Cascades and networks of regulatory genes that control antibiotic biosynthesis. Subcell Biochem 2012; 64:115-138. [PMID: 23080248 DOI: 10.1007/978-94-007-5055-5_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Onset of the biosynthesis of bioactive secondary metabolites in batch cultures of actinomycetes occurs after the rapid growth phase, following a transition phase which involves complex metabolic changes. This transition is triggered by nutrient starvation or by other environmental stress signals. Expression of genes encoding bioactive secondary metabolites is governed by cascades of pathway specific regulators and networks of cross-talking global regulators. Pathway specific regulators such as Streptomyces antibiotic regulatory proteins, LAL-type and LysR-type regulators respond to autoregulatory proteins that act in concert with their cognate ligands (e.g. γ-butyrolactone receptor proteins and their cognate γ-butyrolactone ligands). Global regulators such as PhoR-PhoP and other two component systems and orphan response regulators, such as GlnR, control set of genes affecting primary and secondary metabolism. GlnR and, therefore, nitrogen metabolism genes are under phosphate control exerted by binding of PhoP to PHO boxes located in the promoter region of GlnR. A few pleiotropic regulatory genes, such as areB (ndgR), dmdR1 or dasR connect primary metabolism (amino acid biosynthesis, N-acetylglucosamine or iron levels) with antibiotic biosynthesis. Some atypical response regulators that require specific small ligands appear to be involved in feedback control of antibiotic production. All these mechanisms together modulate, in a coordinated manner, different aspects of Streptomyces metabolism as a real "protection net" that prevents drastic changes in metabolism that may be deleterious for cell survival.
Collapse
Affiliation(s)
- Juan F Martín
- Department of Molecular Biology, University of León, León, 24071, Spain,
| | | |
Collapse
|
32
|
Yagüe P, Lopez-Garcia MT, Rioseras B, Sanchez J, Manteca A. New insights on the development of Streptomyces and their relationships with secondary metabolite production. CURRENT TRENDS IN MICROBIOLOGY 2012; 8:65-73. [PMID: 24707121 PMCID: PMC3972883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Streptomycetes are very important industrial bacteria, which produce two thirds of all clinically relevant secondary metabolites. Furthermore, they produce large numbers of eukaryotic cell differentiation and apoptosis inducers. Streptomyces is a mycelial soil bacterium characterized by a complex developmental cycle that includes programmed cell death (PCD) phenomena and sporulation in solid cultures. Industrial fermentations are usually performed in liquid cultures, conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that there was no differentiation. Recently, novel aspects concerning differentiation during the presporulation phases were described in solid and liquid cultures, as well as in natural soils. In this review, we analyze the status of knowledge regarding the above-named aspects of Streptomyces differentiation and their relationships with secondary metabolite production.
Collapse
Affiliation(s)
- P Yagüe
- Area de Microbiologia, Departamento de Biologia Funcional and IUBA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - M T Lopez-Garcia
- Area de Microbiologia, Departamento de Biologia Funcional and IUBA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - B Rioseras
- Area de Microbiologia, Departamento de Biologia Funcional and IUBA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - J Sanchez
- Area de Microbiologia, Departamento de Biologia Funcional and IUBA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - A Manteca
- Area de Microbiologia, Departamento de Biologia Funcional and IUBA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
33
|
Manteca A, Ye J, Sánchez J, Jensen ON. Phosphoproteome analysis of Streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation. J Proteome Res 2011; 10:5481-92. [PMID: 21999169 DOI: 10.1021/pr200762y] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptomycetes are bacterial species that undergo a complex developmental cycle that includes programmed cell death (PCD) events and sporulation. They are widely used in biotechnology because they produce most clinically relevant secondary metabolites. Although Streptomyces coelicolor is one of the bacteria encoding the largest number of eukaryotic type kinases, the biological role of protein phosphorylation in this bacterium has not been extensively studied before. In this issue, the variations of the phosphoproteome of S. coelicolor were characterized. Most distinct Ser/Thr/Tyr phosphorylation events were detected during the presporulation and sporulation stages (80%). Most of these phosphorylations were not reported before in Streptomyces, and included sporulation factors, transcriptional regulators, protein kinases and other regulatory proteins. Several of the identified phosphorylated proteins, FtsZ, DivIVA, and FtsH2, were previously demonstrated to be involved in the sporulation process. We thus established for the first time the widespread occurrence and dynamic features of Ser/Thr/Tyr protein phosphorylation in a bacteria species and also revealed a previously unrecognized phosphorylation motif "x(pT)xEx".
Collapse
Affiliation(s)
- Angel Manteca
- Area de Microbiologia, Departamento de Biologia Funcional and IUBA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain.
| | | | | | | |
Collapse
|
34
|
Hu YJ, Zhu BQ. [Research progress on strain improvement of Acremonium chrysogenum by genetic engineering]. YI CHUAN = HEREDITAS 2011; 33:1079-1086. [PMID: 21993282 DOI: 10.3724/sp.j.1005.2011.01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Acremonium chrysogenum, cephalosporin C (CPC) producing strain, is an important industrial microorganism. CPC is used to produce 7-ACA, a major intermediate for manufacturing of many first-line anti-infectious cephalosporin-antibiotics. The fermentation level of CPC determines the production, quality and cost of its downstream products. Therefore, it is necessary to develop the strains of A. chrysogenum. Along with the development of molecular biology, genetic manipulation technique is becoming more and more important in the field of molecular breeding. This paper reviews the latest research progresses on CPC biosynthesis and its regulation. Genetic manipulations of A. chrysogenum were summarized and concluded. We suggested that strain improvement of A. chrysogenum by means of induction and expression of biosynthetic and regulatory genes, as well as exogenous genes, and further optimization could be applied to different aspects including CPC production enhancement and metabolic pathway elongation, etc. Future direction of this field is also proposed. We believed that incorporation of comparative proteomics and genomic shuffling with molecular breeding could lead the achievements close to industry promptly.
Collapse
Affiliation(s)
- You-Jia Hu
- Shanghai Institute of Pharmaceutical Industry, Shanghai, China.
| | | |
Collapse
|
35
|
van Wezel GP, McDowall KJ. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 2011; 28:1311-33. [PMID: 21611665 DOI: 10.1039/c1np00003a] [Citation(s) in RCA: 321] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Streptomycetes and other actinobacteria are renowned as a rich source of natural products of clinical, agricultural and biotechnological value. They are being mined with renewed vigour, supported by genome sequencing efforts, which have revealed a coding capacity for secondary metabolites in vast excess of expectations that were based on the detection of antibiotic activities under standard laboratory conditions. Here we review what is known about the control of production of so-called secondary metabolites in streptomycetes, with an emphasis on examples where details of the underlying regulatory mechanisms are known. Intriguing links between nutritional regulators, primary and secondary metabolism and morphological development are discussed, and new data are included on the carbon control of development and antibiotic production, and on aspects of the regulation of the biosynthesis of microbial hormones. Given the tide of antibiotic resistance emerging in pathogens, this review is peppered with approaches that may expand the screening of streptomycetes for new antibiotics by awakening expression of cryptic antibiotic biosynthetic genes. New technologies are also described that have potential to greatly further our understanding of gene regulation in what is an area fertile for discovery and exploitation
Collapse
|
36
|
Rosenqvist H, Ye J, Jensen ON. Analytical strategies in mass spectrometry-based phosphoproteomics. Methods Mol Biol 2011; 753:183-213. [PMID: 21604124 DOI: 10.1007/978-1-61779-148-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phosphoproteomics, the systematic study of protein phosphorylation events and cell signaling networks in cells and tissues, is a rapidly evolving branch of functional proteomics. Current phosphoproteomics research provides a large toolbox of strategies and protocols that may assist researchers to reveal key regulatory events and phosphorylation-mediated processes in the cell and in whole organisms. We present an overview of sensitive and robust analytical methods for phosphopeptide analysis, including calcium phosphate precipitation and affinity enrichment methods such as IMAC and TiO(2). We then discuss various tandem mass spectrometry approaches for phosphopeptide sequencing and quantification, and we consider aspects of phosphoproteome data analysis and interpretation. Efficient integration of these stages of phosphoproteome analysis is highly important to ensure a successful outcome of large-scale experiments for studies of phosphorylation-mediated protein regulation.
Collapse
Affiliation(s)
- Heidi Rosenqvist
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
| | | | | |
Collapse
|