1
|
Wang N, Zhang L, Ying Q, Song Z, Lu A, Treumann A, Liu Z, Sun T, Ding Z. A reverse phase protein array based phospho-antibody characterization approach and its applicability for clinical derived tissue specimens. Sci Rep 2022; 12:22373. [PMID: 36572710 PMCID: PMC9792559 DOI: 10.1038/s41598-022-26715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
Systematic quantification of phosphoprotein within cell signaling networks in solid tissues remains challenging and precise quantification in large scale samples has great potential for biomarker identification and validation. We developed a reverse phase protein array (RPPA) based phosphor-antibody characterization approach by taking advantage of the lysis buffer compatible with alkaline phosphatase (AP) treatment that differs from the conventional RPPA antibody validation procedure and applied it onto fresh frozen (FF) and formalin-fixed and paraffin-embedded tissue (FFPE) to test its applicability. By screening 106 phospho-antibodies using RPPA, we demonstrated that AP treatment could serve as an independent factor to be adopted for rapid phospho-antibody selection. We also showed desirable reproducibility and specificity in clincical specimens indicating its potential for tissue-based phospho-protein profiling. Of further clinical significance, using the same approach, based on melanoma and lung cancer FFPE samples, we showed great interexperimental reproducibility and significant correlation with pathological markers in both tissues generating meaningful data that match clinical features. Our findings set a benchmark of an efficient workflow for phospho-antibody characterization that is compatible with high-plex clinical proteomics in precison oncology.
Collapse
Affiliation(s)
- Nan Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies, Floor 22, Overseas Chinese Innovation Zone, Gangxing 3rd Rd, High-Tech and Innovation Zone, Jinan, 250100 China
| | - Li Zhang
- grid.412474.00000 0001 0027 0586Department of Pathology, Beijing Cancer Hospital, No 52. Fucheng Rd, Haidian District, Beijing, 100142 China
| | - Qi Ying
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies, Floor 22, Overseas Chinese Innovation Zone, Gangxing 3rd Rd, High-Tech and Innovation Zone, Jinan, 250100 China
| | - Zhentao Song
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies, Floor 22, Overseas Chinese Innovation Zone, Gangxing 3rd Rd, High-Tech and Innovation Zone, Jinan, 250100 China
| | - Aiping Lu
- grid.412474.00000 0001 0027 0586Department of Pathology, Beijing Cancer Hospital, No 52. Fucheng Rd, Haidian District, Beijing, 100142 China
| | - Achim Treumann
- grid.1006.70000 0001 0462 7212Newcastle University Protein and Proteome Analysis, Newcastle University, Devonshire Building, Newcastle upon Tyne, NE1 7RU UK ,KBI Biopharma BV, Leuven, Flanders Belgium
| | - Zhaojian Liu
- grid.27255.370000 0004 1761 1174Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Tao Sun
- grid.27255.370000 0004 1761 1174Department of Haematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies, Floor 22, Overseas Chinese Innovation Zone, Gangxing 3rd Rd, High-Tech and Innovation Zone, Jinan, 250100 China
| |
Collapse
|
2
|
Reverse Phase Protein Arrays. Methods Mol Biol 2021; 2237:103-122. [PMID: 33237412 DOI: 10.1007/978-1-0716-1064-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Reverse phase protein arrays (RPPA) are used to quantify proteins and protein posttranslational modifications in cellular lysates and body fluids. RPPA technology is suitable for biomarker discovery, protein pathway profiling, functional phenotype analysis, and drug discovery mechanism of action. The principles of RPPA technology are (a) immobilizing protein-containing specimens on a coated slide in discrete spots, (b) antibody recognition of proteins, (c) amplification chemistries to detect the protein-antibody complex, and (d) quantifying spot intensity. Construction of a RPPA begins with the robotic liquid transfer of protein-containing specimens from microtiter plates onto nitrocellulose-coated slides. The robotic arrayer deposits each sample as discrete spots in an array format. Specimens, controls, and calibrators are printed on each array, thus providing a complete calibrated assay on a single slide. Each RPPA slide is subsequently probed with catalyzed signal amplification chemistries and a single primary antibody, a secondary antibody, and either fluorescent or colorimetric dyes. The focus of this chapter is to describe RPPA detection and imaging using a colorimetric (diaminobenzidine (DAB)) detection strategy.
Collapse
|
3
|
Thejer BM, Adhikary PP, Kaur A, Teakel SL, Van Oosterum A, Seth I, Pajic M, Hannan KM, Pavy M, Poh P, Jazayeri JA, Zaw T, Pascovici D, Ludescher M, Pawlak M, Cassano JC, Turnbull L, Jazayeri M, James AC, Coorey CP, Roberts TL, Kinder SJ, Hannan RD, Patrick E, Molloy MP, New EJ, Fehm TN, Neubauer H, Goldys EM, Weston LA, Cahill MA. PGRMC1 phosphorylation affects cell shape, motility, glycolysis, mitochondrial form and function, and tumor growth. BMC Mol Cell Biol 2020; 21:24. [PMID: 32245408 PMCID: PMC7119165 DOI: 10.1186/s12860-020-00256-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/04/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in many cancer cells, where it is associated with detrimental patient outcomes. It contains phosphorylated tyrosines which evolutionarily preceded deuterostome gastrulation and tissue differentiation mechanisms. RESULTS We demonstrate that manipulating PGRMC1 phosphorylation status in MIA PaCa-2 (MP) cells imposes broad pleiotropic effects. Relative to parental cells over-expressing hemagglutinin-tagged wild-type (WT) PGRMC1-HA, cells expressing a PGRMC1-HA-S57A/S181A double mutant (DM) exhibited reduced levels of proteins involved in energy metabolism and mitochondrial function, and altered glucose metabolism suggesting modulation of the Warburg effect. This was associated with increased PI3K/AKT activity, altered cell shape, actin cytoskeleton, motility, and mitochondrial properties. An S57A/Y180F/S181A triple mutant (TM) indicated the involvement of Y180 in PI3K/AKT activation. Mutation of Y180F strongly attenuated subcutaneous xenograft tumor growth in NOD-SCID gamma mice. Elsewhere we demonstrate altered metabolism, mutation incidence, and epigenetic status in these cells. CONCLUSIONS Altogether, these results indicate that mutational manipulation of PGRMC1 phosphorylation status exerts broad pleiotropic effects relevant to cancer and other cell biology.
Collapse
Affiliation(s)
- Bashar M Thejer
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
- Department of Biology, College of Science, University of Wasit, Wasit, 00964, Iraq
| | - Partho P Adhikary
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
- Present address: Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Amandeep Kaur
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
- Present address: School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sarah L Teakel
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Ashleigh Van Oosterum
- Life Sciences and Health, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Ishith Seth
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Darlinghurst, 2010, NSW, Australia
| | - Katherine M Hannan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Megan Pavy
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Perlita Poh
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Thiri Zaw
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marina Ludescher
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, 40225, Dusseldorf, Germany
| | - Michael Pawlak
- NMI TT Pharmaservices, Protein Profiling, 72770, Reutlingen, Germany
| | - Juan C Cassano
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science & Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St Gallen, Switzerland
| | - Lynne Turnbull
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Present address: GE Healthcare Life Sciences, Issaquah, WA, 98027, USA
| | - Mitra Jazayeri
- Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Alexander C James
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Liverpool, NSW, 2170, Australia
| | - Craig P Coorey
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- School of Medicine and University of Queensland Centre for Clinical Research, Herston, QLD, 4006, Australia
| | - Tara L Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Liverpool, NSW, 2170, Australia
- School of Medicine and University of Queensland Centre for Clinical Research, Herston, QLD, 4006, Australia
| | | | - Ross D Hannan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3168, Australia
| | - Ellis Patrick
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
- Present address: The Kolling Institute, The University of Sydney, St Leonards (Sydney), NSW, 2064, Australia
| | - Elizabeth J New
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, 40225, Dusseldorf, Germany
| | - Hans Neubauer
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, 40225, Dusseldorf, Germany
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia
- Present address: The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia.
| |
Collapse
|
4
|
Bockmayr T, Erdmann G, Treue D, Jurmeister P, Schneider J, Arndt A, Heim D, Bockmayr M, Sachse C, Klauschen F. Multiclass cancer classification in fresh frozen and formalin-fixed paraffin-embedded tissue by DigiWest multiplex protein analysis. J Transl Med 2020; 100:1288-1299. [PMID: 32601356 PMCID: PMC7498367 DOI: 10.1038/s41374-020-0455-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 11/28/2022] Open
Abstract
Histomorphology and immunohistochemistry are the most common ways of cancer classification in routine cancer diagnostics, but often reach their limits in determining the organ origin in metastasis. These cancers of unknown primary, which are mostly adenocarcinomas or squamous cell carcinomas, therefore require more sophisticated methodologies of classification. Here, we report a multiplex protein profiling-based approach for the classification of fresh frozen and formalin-fixed paraffin-embedded (FFPE) cancer tissue samples using the digital western blot technique DigiWest. A DigiWest-compatible FFPE extraction protocol was developed, and a total of 634 antibodies were tested in an initial set of 16 FFPE samples covering tumors from different origins. Of the 303 detected antibodies, 102 yielded significant correlation of signals in 25 pairs of fresh frozen and FFPE primary tumor samples, including head and neck squamous cell carcinomas (HNSC), lung squamous cell carcinomas (LUSC), lung adenocarcinomas (LUAD), colorectal adenocarcinomas (COAD), and pancreatic adenocarcinomas (PAAD). For this signature of 102 analytes (covering 88 total proteins and 14 phosphoproteins), a support vector machine (SVM) algorithm was developed. This allowed for the classification of the tissue of origin for all five tumor types studied here with high overall accuracies in both fresh frozen (90.4%) and FFPE (77.6%) samples. In addition, the SVM classifier reached an overall accuracy of 88% in an independent validation cohort of 25 FFPE tumor samples. Our results indicate that DigiWest-based protein profiling represents a valuable method for cancer classification, yielding conclusive and decisive data not only from fresh frozen specimens but also FFPE samples, thus making this approach attractive for routine clinical applications.
Collapse
Affiliation(s)
- Teresa Bockmayr
- grid.7468.d0000 0001 2248 7639Institute of Pathology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | | | - Denise Treue
- grid.7468.d0000 0001 2248 7639Institute of Pathology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany ,Central Biobank Charité (ZeBanC), Berlin, Germany
| | - Philipp Jurmeister
- grid.7468.d0000 0001 2248 7639Institute of Pathology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Daniel Heim
- grid.7468.d0000 0001 2248 7639Institute of Pathology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Bockmayr
- grid.7468.d0000 0001 2248 7639Institute of Pathology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany ,grid.13648.380000 0001 2180 3484Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.470174.1Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | | | - Frederick Klauschen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany. .,German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
5
|
High Precision RPPA: Concept, Features, and Application Performance of the Integrated Zeptosens Platform. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1188:31-59. [PMID: 31820382 DOI: 10.1007/978-981-32-9755-5_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An integrated reverse phase protein array (RPPA) platform shall allow the precise monitoring of expression level and changes of proteins and their functional states in a highly parallel manner even when samples exhibit a complex matrix like in tumor tissues and are available only in very limited amounts. Ideally the full workflow from sample preparation to data visualization shall be covered.This book chapter describes the key elements of the integrated Zeptosens RPPA platform. It addresses critical platform and process design requirements, considerations, and elements as well as critical process steps and quality aspects. Sophisticated instrumentation, high sensitivity readout, and dedicated chip and assay handling equipment act in concert with streamlined protocols, optimal reagents, and dedicated lab equipment in the hands of trained users to achieve an outstanding overall performance of the realized system. Based on results from comprehensive signaling protein and pathway profiling studies targeted for preclinical drug efficacy testing and development, it gives an overview of application performance by means of coefficients of variation (CVs) that can be achieved for assay signals from technical and biological sample replicates with this state-of-the-art integrated RPPA platform and process.The Zeptosens RPPA platform has proven to provide valuable biological information with a high level of confidence and has shown its validity in generating sound mechanistic as well as prognostic and predictive information when analyzing cell and tissue materials on the functional protein level.
Collapse
|
6
|
Yokota H. Applications of proteomics in pharmaceutical research and development. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:17-21. [PMID: 29753086 DOI: 10.1016/j.bbapap.2018.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/10/2018] [Accepted: 05/08/2018] [Indexed: 01/13/2023]
Abstract
The significance of proteomics in the pharmaceutical industry has increased since overcoming initial difficulties. This review discusses recent proteomics publications from pharmaceutical companies to identify new trends in proteomics applications to research and development. Applications of proteomics such as chemical proteomics, protein expression profiling, targeted protein quantitation, analysis of protein-protein interactions and post-translational modification are widely used by various sections of the industry. Technological advancements in proteomics will further accelerate pharmaceutical research and development.
Collapse
Affiliation(s)
- Hiroyuki Yokota
- Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi 305-8585, Japan.
| |
Collapse
|
7
|
Willibald M, Bayer G, Stahlhut V, Poschmann G, Stühler K, Gierke B, Pawlak M, Seeger H, Mueck AO, Niederacher D, Fehm T, Neubauer H. Progesterone receptor membrane component 1 is phosphorylated upon progestin treatment in breast cancer cells. Oncotarget 2017; 8:72480-72493. [PMID: 29069804 PMCID: PMC5641147 DOI: 10.18632/oncotarget.19819] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/27/2017] [Indexed: 11/25/2022] Open
Abstract
Menopausal hormone therapy, using estrogen and synthetic progestins, is associated with an increased risk of developing breast cancer. The effect of progestins on breast cells is complex and not yet fully understood. In previous in vitro and in vivo studies, we found different progestins to increase the proliferation of Progesterone Receptor Membrane Component-1 (PGRMC1)-overexpressing MCF7 cells (MCF7/PGRMC1), suggesting a possible role of PGRMC1 in transducing membrane-initiated progestin signals. Understanding the activation mechanism of PGRMC1 by progestins will provide deeper insights into the mode of action of progestins on breast cells and the often-reported phenomenon of elevated breast cancer rates upon progestin-based hormone therapy. In the present study, we aimed to further investigate the effect of progestins on receptor activation in MCF7 and T47D breast cancer cell lines. We report that treatment of both breast cancer cell lines with the progestin norethisterone (NET) induces phosphorylation of PGRMC1 at the Casein Kinase 2 (CK2) phosphorylation site Ser181, which can be decreased by treatment with CK2 inhibitor quinalizarin. Point mutation of the Ser181 phosphorylation site in MCF7/PGRMC1 cells impaired proliferation upon NET treatment. This study gives further insights into the mechanism of differential phosphorylation of the receptor and confirms our earlier hypothesis that phosphorylation of the CK2-binding site is essential for activation of PGRMC1. It further suggests an important role of PGRMC1 in the tumorigenesis and progression of breast cancer in progestin-based hormone replacement therapy.
Collapse
Affiliation(s)
- Marina Willibald
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Giuliano Bayer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Vanessa Stahlhut
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Duesseldorf, Duesseldorf, Germany.,Institute for Molecular Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Berthold Gierke
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Michael Pawlak
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Harald Seeger
- Department of Women's Health, University Hospital and Faculty of Medicine of the Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Alfred O Mueck
- Department of Women's Health, University Hospital and Faculty of Medicine of the Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
8
|
Donczo B, Szarka M, Tovari J, Ostoros G, Csanky E, Guttman A. Molecular glycopathology by capillary electrophoresis: Analysis of the N-glycome of formalin-fixed paraffin-embedded mouse tissue samples. Electrophoresis 2017; 38:1602-1608. [PMID: 28334446 DOI: 10.1002/elps.201600558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/18/2017] [Accepted: 02/19/2017] [Indexed: 12/17/2022]
Abstract
Capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection was used to analyze endoglycosidase released and fluorophore-labeled N-glycans from formalin-fixed paraffin-embedded (FFPE) mouse tissue samples of lung, brain, heart, spleen, liver, kidney and intestine. The FFPE samples were first deparaffinized followed by solubilization and glycoprotein retrieval. PNGase F mediated release of the N-linked oligosaccharides was followed by labeling with aminopyrene trisulfonate. After CE-LIF glycoprofiling of the FFPE mouse tissues, the N-glycan pool of the lung specimen was subject to further investigation by exoglycosidase array based carbohydrate sequencing. Structural assignment of the oligosaccharides was accomplished by the help of the GUcal software and the associated database, based on the mobility shifts after treatments with the corresponding exoglycosidase reaction mixtures. Sixteen major N-linked carbohydrate structures were sequenced from the mouse lung FFPE tissue glycome and identified, as high mannose (3) neutral biantennary (3) sialylated monoantennary (1) and sialylated bianennary (9) oligosaccharides. Two of these latter ones also possessed alpha(1-3) linked galactose residues.
Collapse
Affiliation(s)
- Boglarka Donczo
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Hungary
| | - Mate Szarka
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Hungary
| | | | | | | | - Andras Guttman
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Hungary.,MTA-PE Translational Glycomics Group, University of Pannonia, Veszprem, Hungary
| |
Collapse
|
9
|
Lu Y, Ling S, Hegde AM, Byers LA, Coombes K, Mills GB, Akbani R. Using reverse-phase protein arrays as pharmacodynamic assays for functional proteomics, biomarker discovery, and drug development in cancer. Semin Oncol 2016; 43:476-83. [PMID: 27663479 PMCID: PMC5111873 DOI: 10.1053/j.seminoncol.2016.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The majority of the targeted therapeutic agents in clinical use target proteins and protein function. Although DNA and RNA analyses have been used extensively to identify novel targets and patients likely to benefit from targeted therapies, these are indirect measures of the levels and functions of most therapeutic targets. More importantly, DNA and RNA analysis is ill-suited for determining the pharmacodynamic effects of target inhibition. Assessing changes in protein levels and function is the most efficient way to evaluate the mechanisms underlying sensitivity and resistance to targeted agents. Understanding these mechanisms is necessary to identify patients likely to benefit from treatment and to develop rational drug combinations to prevent or bypass therapeutic resistance. There is an urgent need for a robust approach to assess protein levels and protein function in model systems and across patient samples. While "shot gun" mass spectrometry can provide in-depth analysis of proteins across a limited number of samples, and emerging approaches such as multiple reaction monitoring have the potential to analyze candidate markers, mass spectrometry has not entered into general use because of the high cost, requirement of extensive analysis and support, and relatively large amount of material needed for analysis. Rather, antibody-based technologies, including immunohistochemistry, radioimmunoassays, enzyme-linked immunosorbent assays (ELISAs), and more recently protein arrays, remain the most common approaches for multiplexed protein analysis. Reverse-phase protein array (RPPA) technology has emerged as a robust, sensitive, cost-effective approach to the analysis of large numbers of samples for quantitative assessment of key members of functional pathways that are affected by tumor-targeting therapeutics. The RPPA platform is a powerful approach for identifying and validating targets, classifying tumor subsets, assessing pharmacodynamics, and identifying prognostic and predictive markers, adaptive responses and rational drug combinations in model systems and patient samples. Its greatest utility has been realized through integration with other analytic platforms such as DNA sequencing, transcriptional profiling, epigenomics, mass spectrometry, and metabolomics. The power of the technology is becoming apparent through its use in pathology laboratories and integration into trial design and implementation.
Collapse
Affiliation(s)
- Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shiyun Ling
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Apurva M Hegde
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lauren A Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kevin Coombes
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|