1
|
Tanuwidjaya E, Schittenhelm RB, Faridi P. Soluble HLA peptidome: A new resource for cancer biomarkers. Front Oncol 2022; 12:1069635. [PMID: 36620582 PMCID: PMC9815702 DOI: 10.3389/fonc.2022.1069635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Using circulating molecular biomarkers to screen for cancer and other debilitating disorders in a high-throughput and low-cost fashion is becoming increasingly attractive in medicine. One major limitation of investigating protein biomarkers in body fluids is that only one-fourth of the entire proteome can be routinely detected in these fluids. In contrast, Human Leukocyte Antigen (HLA) presents peptides from the entire proteome on the cell surface. While peptide-HLA complexes are predominantly membrane-bound, a fraction of HLA molecules is released into body fluids which is referred to as soluble HLAs (sHLAs). As such peptides bound by sHLA molecules represent the entire proteome of their cells/tissues of origin and more importantly, recent advances in mass spectrometry-based technologies have allowed for accurate determination of these peptides. In this perspective, we discuss the current understanding of sHLA-peptide complexes in the context of cancer, and their potential as a novel, relatively untapped repertoire for cancer biomarkers. We also review the currently available tools to detect and quantify these circulating biomarkers, and we discuss the challenges and future perspectives of implementing sHLA biomarkers in a clinical setting.
Collapse
Affiliation(s)
- Erwin Tanuwidjaya
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia,*Correspondence: Pouya Faridi, ; Ralf B. Schittenhelm,
| | - Pouya Faridi
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia,Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia,*Correspondence: Pouya Faridi, ; Ralf B. Schittenhelm,
| |
Collapse
|
2
|
Zhu L, Yang X, Zhong D, Xie S, Shi W, Li Y, Hou X, HuaYao, Zhou H, Zhao M, Ding Z, Zhao X, Mo F, Yin S, Liu A, Lu X. Single-Domain Antibody-Based TCR-Like CAR-T: A Potential Cancer Therapy. J Immunol Res 2020; 2020:2454907. [PMID: 32964055 PMCID: PMC7492946 DOI: 10.1155/2020/2454907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Retargeting the antigen-binding specificity of T cells to intracellular antigens that are degraded and presented on the tumor surface by engineering chimeric antigen receptor (CAR), also named TCR-like antibody CAR-T, remains limited. With the exception of the commercialized CD19 CAR-T for hematological malignancies and other CAR-T therapies aiming mostly at extracellular antigens achieving great success, the rareness and scarcity of TCR-like CAR-T therapies might be due to their current status and limitations. This review provides the probable optimized initiatives for improving TCR-like CAR-T reprogramming and discusses single-domain antibodies administered as an alternative to conventional scFvs and secreted by CAR-T cells, which might be of great value to the development of CAR-T immunotherapies for intracellular antigens.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Epitopes, T-Lymphocyte/immunology
- Genetic Engineering
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Single-Chain Antibodies/immunology
- Single-Domain Antibodies/genetics
- Single-Domain Antibodies/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Lichen Zhu
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaomei Yang
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dani Zhong
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Chemotherapy, Affiliated Cancer Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shenxia Xie
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wei Shi
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yangzi Li
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoqiong Hou
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - HuaYao
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huihui Zhou
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Minlong Zhao
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ziqiang Ding
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xinyue Zhao
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Fengzhen Mo
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shihua Yin
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Aiqun Liu
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoling Lu
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
3
|
ERAP1 shapes just part of the immunopeptidome. Hum Immunol 2019; 80:296-301. [DOI: 10.1016/j.humimm.2019.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 01/22/2023]
|
4
|
Immunological evaluation of a novel HLA-A2 restricted phosphopeptide of tumor associated Antigen, TRAP1, on cancer therapy. Vaccine X 2019; 1:100017. [PMID: 31384738 PMCID: PMC6668235 DOI: 10.1016/j.jvacx.2019.100017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
The tumor necrosis factor receptor associated protein 1 (TRAP1) is a mitochondria chaperon protein that has been previously implicated as a target for cancer therapy due to its expression level is linked to tumor progression. In this study, an immunodominant phosphopeptide of TRAP1 was identified from an HLA-A2 gene transfected mouse cancer cell line using mass spectrometry, and a synthetic phosphopeptide was generated to evaluate the potency on cancer immunotherapy. In the transporter associated with antigen processing (TAP) deficient cell, the conjugated phosphate group plays a critical role to enhance the binding affinity of phosphopeptide with HLA-A2 molecule. On the basis of immunological assay, immunization of synthetic phosphopeptide could induce a high frequency of IFN-γ-secreting CD8+ T cells in HLA-A2 transgenic mice, and the stimulated cytotoxic T lymphocytes showed a high target specificity to lysis the epitope-pulsed splenocytes in vivo and the human lung cancer cell in vitro. In a tumor challenge assay, vaccination of the HLA-A2 restricted phosphopeptide appeared to suppress the tumor growth and prolong the survival period of tumor-bearing mice. These results suggest that novel phosphopeptide is naturally presented as a HLA-A2-restricted CTL epitope and capable of being a potential candidate for the development of therapeutic vaccine against high TRAP1-expressing cancers.
Collapse
|
5
|
Xu Y, Salazar GT, Zhang N, An Z. T-cell receptor mimic (TCRm) antibody therapeutics against intracellular proteins. Antib Ther 2019; 2:22-32. [PMID: 33928218 PMCID: PMC7990144 DOI: 10.1093/abt/tbz001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
T-cell receptor mimic (TCRm) antibodies combine the capacity of a T cell to target intracellular antigens with other capacities unique to antibodies. Neoantigens are abnormal proteins that arise as a consequence of somatic mutations. Technological advances promote the development of neoantigen-targeting therapies including TCRm antibody therapies. This review summarizes key characteristics of TCRm antibodies, in particular those targeting neoantigens, and further introduces discussion of obstacles that must be overcome to advance TCRm therapeutics.
Collapse
Affiliation(s)
- Yixiang Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Georgina To'a Salazar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
6
|
Polyakova A, Kuznetsova K, Moshkovskii S. Proteogenomics meets cancer immunology: mass spectrometric discovery and analysis of neoantigens. Expert Rev Proteomics 2015; 12:533-41. [DOI: 10.1586/14789450.2015.1070100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Kim HS, Kang D, Moon MH, Kim HJ. Identification of pancreatic cancer-associated tumor antigen from HSP-enriched tumor lysate-pulsed human dendritic cells. Yonsei Med J 2014; 55:1014-27. [PMID: 24954332 PMCID: PMC4075362 DOI: 10.3349/ymj.2014.55.4.1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/23/2013] [Accepted: 11/04/2013] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Vaccine strategies utilizing dendritic cells (DCs) to elicit anti-tumor immunity are the subject of intense research. Although we have shown that DCs pulsed with heat-treated tumor lysate (HTL) induced more potent anti-tumor immunity than DCs pulsed with conventional tumor lysate (TL), the underlying molecular mechanism is unclear. In order to explore the molecular basis of this approach and to identify potential antigenic peptides from pancreatic cancer, we analyzed and compared the major histocompatibility complex (MHC) ligands derived from TL- and HTL-pulsed dendritic cells by mass spectrophotometry. MATERIALS AND METHODS Human monocyte-derived dendritic cells were pulsed with TL or HTL prior to maturation induction. To delineate differences of MHC-bound peptide repertoire eluted from DCs pulsed with TL or HTL, nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS) was employed. RESULTS HTL, but not TL, significantly induced DC function, assessed by phenotypic maturation, allostimulation capacity and IFN-γ secretion by stimulated allogeneic T cells. DCs pulsed with TL or HTL displayed pancreas or pancreatic cancer-related peptides in context of MHC class I and II molecules. Some of the identified peptides had not been previously reported as expressed in pancreatic cancer or cancer of other tissue types. CONCLUSION Our partial lists of MHC-associated peptides revealed the differences between peptide profiles eluted from HTL-and TL-loaded DCs, implying that induced heat shock proteins in HTL chaperone tumor-derived peptides enhanced their delivery to DCs and promoted cross-presentation by DC. These findings may aid in identifying novel tumor antigens or biomarkers and in designing future vaccination strategies.
Collapse
Affiliation(s)
- Han-Soo Kim
- Innovative Cell and Gene Therapy Center, International St. Mary's Hospital, Incheon, Korea
| | - Dukjin Kang
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, Korea
| | | | - Hyung Jik Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea.
| |
Collapse
|
8
|
Comber JD, Philip R. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines. THERAPEUTIC ADVANCES IN VACCINES 2014; 2:77-89. [PMID: 24790732 DOI: 10.1177/2051013614525375] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Major histocompatibility complex class I (MHC-I) presented peptide epitopes provide a 'window' into the changes occurring in a cell. Conventionally, these peptides are generated by proteolysis of endogenously synthesized proteins in the cytosol, loaded onto MHC-I molecules, and presented on the cell surface for surveillance by CD8(+) T cells. MHC-I restricted processing and presentation alerts the immune system to any infectious or tumorigenic processes unfolding intracellularly and provides potential targets for a cytotoxic T cell response. Therefore, therapeutic vaccines based on MHC-I presented peptide epitopes could, theoretically, induce CD8(+) T cell responses that have tangible clinical impacts on tumor eradication and patient survival. Three major methods have been used to identify MHC-I restricted epitopes for inclusion in peptide-based vaccines for cancer: genetic, motif prediction and, more recently, immunoproteomic analysis. Although the first two methods are capable of identifying T cell stimulatory epitopes, these have significant disadvantages and may not accurately represent epitopes presented by a tumor cell. In contrast, immunoproteomic methods can overcome these disadvantages and identify naturally processed and presented tumor associated epitopes that induce more clinically relevant tumor specific cytotoxic T cell responses. In this review, we discuss the importance of using the naturally presented MHC-I peptide repertoire in formulating peptide vaccines, the recent application of peptide-based vaccines in a variety of cancers, and highlight the pros and cons of the current state of peptide vaccines.
Collapse
Affiliation(s)
| | - Ramila Philip
- Immunotope, Inc., Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA
| |
Collapse
|
9
|
Abstract
The mammalian immune system has evolved to display peptides derived from microbial antigens to immune effector cells. Liberated from the intact antigens through distinct proteolytic mechanisms, these peptides are subsequently transported to the cell surface while bound to chaperone-like receptors known as major histocompatibility complex molecules. These complexes are then scrutinized by T-cells that express receptors with specificity for specific major histocompatibility complex-peptide complexes. In normal uninfected cells, this process of antigen processing and presentation occurs continuously, with the resultant array of self-antigen-derived peptides displayed on the surface of these cells. Changes in this cellular peptide array alert the immune system to changes in the intracellular environment that may be associated with infection, oncogenesis or other abnormal cellular processes, resulting in a cascade of events that result in the elimination of the abnormal cell. Since peptides play such an essential role in informing the immune system of infection with viral or microbial pathogens and the transformation of cells in malignancy, the tools of proteomics, in particular mass spectrometry, are ideally suited to study these immune responses at a molecular level. Recent advances in studies of immune responses that have utilized mass spectrometry and associated technologies are reviewed. The authors gaze into the future and look at current challenges and where proteomics will impact in immunology over the next 5 years.
Collapse
Affiliation(s)
- Nicholas A Williamson
- The University of Melbourne, Department of Biochemistry & Molecular Biology, The Bio21 Molecular Science & Biotechnology Institute, 3010, Victoria, Australia.
| | | |
Collapse
|
10
|
Abstract
A large volume of data relevant to immunology research has accumulated due to sequencing of genomes of the human and other model organisms. At the same time, huge amounts of clinical and epidemiologic data are being deposited in various scientific literature and clinical records. This accumulation of the information is like a goldmine for researchers looking for mechanisms of immune function and disease pathogenesis. Thus the need to handle this rapidly growing immunological resource has given rise to the field known as immunoinformatics. Immunoinformatics, otherwise known as computational immunology, is the interface between computer science and experimental immunology. It represents the use of computational methods and resources for the understanding of immunological information. It not only helps in dealing with huge amount of data but also plays a great role in defining new hypotheses related to immune responses. This chapter reviews classical immunology, different databases, and prediction tool. Further, it briefly describes applications of immunoinformatics in reverse vaccinology, immune system modeling, and cancer diagnosis and therapy. It also explores the idea of integrating immunoinformatics with systems biology for the development of personalized medicine. All these efforts save time and cost to a great extent.
Collapse
Affiliation(s)
- Namrata Tomar
- Machine Intelligence Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata, 700108, India,
| | | |
Collapse
|
11
|
Milner E, Gutter-Kapon L, Bassani-Strenberg M, Barnea E, Beer I, Admon A. The effect of proteasome inhibition on the generation of the human leukocyte antigen (HLA) peptidome. Mol Cell Proteomics 2013; 12:1853-64. [PMID: 23538226 DOI: 10.1074/mcp.m112.026013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Major histocompatibility complex (MHC) class I peptidome is thought to be generated mostly through proteasomal degradation of cellular proteins, a notion that is based on the alterations in presentation of selected peptides following proteasome inhibition. We evaluated the effects of proteasome inhibitors, epoxomicin and bortezomib, on human cultured cancer cells. Because the inhibitors did not reduce the level of presentation of the cell surface human leukocyte antigen (HLA) molecules, we followed their effects on the rates of synthesis of both HLA peptidome and proteome of the cells, using dynamic stable isotope labeling in tissue culture (dynamic-SILAC). The inhibitors reduced the rates of synthesis of most cellular proteins and HLA peptides, yet the synthesis rates of some of the proteins and HLA peptides was not decreased by the inhibitors and of some even increased. Therefore, we concluded that the inhibitors affected the production of the HLA peptidome in a complex manner, including modulation of the synthesis rates of the source proteins of the HLA peptides, in addition to their effect on their degradation. The collected data may suggest that the current reliance on proteasome inhibition may overestimate the centrality of the proteasome in the generation of the MHC peptidome. It is therefore suggested that the relative contribution of the proteasomal and nonproteasomal pathways to the production of the MHC peptidome should be revaluated in accordance with the inhibitors effects on the synthesis rates of the source proteins of the MHC peptides.
Collapse
Affiliation(s)
- Elena Milner
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
12
|
Hombrink P, Hassan C, Kester MGD, de Ru AH, van Bergen CAM, Nijveen H, Drijfhout JW, Falkenburg JHF, Heemskerk MHM, van Veelen PA. Discovery of T Cell Epitopes Implementing HLA-Peptidomics into a Reverse Immunology Approach. THE JOURNAL OF IMMUNOLOGY 2013; 190:3869-77. [DOI: 10.4049/jimmunol.1202351] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Shetty V, Nickens Z, Testa J, Hafner J, Sinnathamby G, Philip R. Quantitative immunoproteomics analysis reveals novel MHC class I presented peptides in cisplatin-resistant ovarian cancer cells. J Proteomics 2012; 75:3270-90. [PMID: 22504797 DOI: 10.1016/j.jprot.2012.03.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/01/2012] [Accepted: 03/25/2012] [Indexed: 10/28/2022]
Abstract
Platinum-based chemotherapy is widely used to treat various cancers including ovarian cancer. However, the mortality rate for patients with ovarian cancer is extremely high, largely due to chemo-resistant progression in patients who respond initially to platinum based chemotherapy. Immunotherapy strategies, including antigen specific vaccines, are being tested to treat drug resistant ovarian cancer with variable results. The identification of drug resistant specific tumor antigens would potentially provide significant improvement in effectiveness when combined with current and emerging therapies. In this study, using an immunoproteomics method based on iTRAQ technology and an LC-MS platform, we identified 952 MHC class I presented peptides. Quantitative analysis of the iTRAQ labeled MHC peptides revealed that cisplatin-resistant ovarian cancer cells display increased levels of MHC peptides derived from proteins that are implicated in many important cancer pathways. In addition, selected differentially presented epitope specific CTL recognize cisplatin-resistant ovarian cancer cells significantly better than the sensitive cells. These over-presented, drug resistance specific MHC class I associated peptide antigens could be potential targets for the development of immunotherapeutic strategies for the treatment of ovarian cancer including the drug resistant phenotype.
Collapse
Affiliation(s)
- Vivekananda Shetty
- Immunotope, Inc., 3805 Old Easton Road, Doylestown, PA 18902, United States.
| | | | | | | | | | | |
Collapse
|
14
|
Admon A, Bassani-Sternberg M. The Human Immunopeptidome Project, a suggestion for yet another postgenome next big thing. Mol Cell Proteomics 2011; 10:O111.011833. [PMID: 21813418 DOI: 10.1074/mcp.o111.011833] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The time is ripe for staging the Human Immunopeptidome Project, whose goal is to analyze the full repertoires of peptides bound to the HLA molecules, in both health and disease. Mass spectrometry technologies have matured to enable comprehensive analyses of both the membrane-bound and the plasma soluble immunopeptidomes associated with each of the HLA allomorphs and the different diseases. The expected outcomes of such project will include basic understanding of the molecular mechanisms involved with formation of immunopeptidomes, correlating them with their source cellular proteomes, definition of both the consensus motifs and the scope of each allomorphs-specific immunopeptidomes, and most importantly, identification of disease-related HLA peptides, which may eventually serve as biomarkers or immunotherapeutics. Ideally, the Human Immunopeptidome Project will become public and the gathered data will be shared, as soon as possible. Other immunopeptidome projects, of other animals, will follow suit.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion, Haifa, Israel.
| | | |
Collapse
|
15
|
Shetty V, Sinnathamby G, Nickens Z, Shah P, Hafner J, Mariello L, Kamal S, Vlahovic' G, Lyerly HK, Morse MA, Philip R. MHC class I-presented lung cancer-associated tumor antigens identified by immunoproteomics analysis are targets for cancer-specific T cell response. J Proteomics 2011; 74:728-43. [DOI: 10.1016/j.jprot.2011.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 01/03/2011] [Accepted: 02/18/2011] [Indexed: 01/14/2023]
|
16
|
Morse MA, Secord AA, Blackwell K, Hobeika AC, Sinnathamby G, Osada T, Hafner J, Philip M, Clay TM, Lyerly HK, Philip R. MHC class I-presented tumor antigens identified in ovarian cancer by immunoproteomic analysis are targets for T-cell responses against breast and ovarian cancer. Clin Cancer Res 2011; 17:3408-19. [PMID: 21300761 DOI: 10.1158/1078-0432.ccr-10-2614] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study is to test whether peptide epitopes chosen from among those naturally processed and overpresented within MHC molecules by malignant, but not normal cells, when formulated into cancer vaccines, could activate antitumor T-cell responses in humans. EXPERIMENTAL DESIGN Mixtures of human leukocyte antigen A2 (HLA-A2)-binding ovarian cancer-associated peptides were used to activate naive T cells to generate antigen-specific T cells that could recognize ovarian and breast cancers in vitro. Combinations of these peptides (0.3 mg of each peptide or 1 mg of each peptide) were formulated into vaccines in conjunction with Montanide ISA-51 and granulocyte monocyte colony stimulating factor which were used to vaccinate patients with ovarian and breast cancer without evidence of clinical disease in parallel pilot clinical trials. RESULTS T cells specific for individual peptides could be generated in vitro by using mixtures of peptides, and these T cells recognized ovarian and breast cancers but not nonmalignant cells. Patient vaccinations were well tolerated with the exception of local erythema and induration at the injection site. Nine of the 14 vaccinated patients responded immunologically to their vaccine by inducing peptide-specific T-cell responses that were capable of recognizing HLA-matched breast and ovarian cancer cells. CONCLUSION Mixtures of specific peptides identified as naturally presented on cancer cells and capable of activating tumor-specific T cells in vitro also initiate or augment immune responses toward solid tumors in cancer patients.
Collapse
Affiliation(s)
- Michael A Morse
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27410, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sinnathamby G, Zerfass J, Hafner J, Block P, Nickens Z, Hobeika A, Secord AA, Lyerly HK, Morse MA, Philip R. ADAM metallopeptidase domain 17 (ADAM17) is naturally processed through major histocompatibility complex (MHC) class I molecules and is a potential immunotherapeutic target in breast, ovarian and prostate cancers. Clin Exp Immunol 2010; 163:324-32. [PMID: 21175594 DOI: 10.1111/j.1365-2249.2010.04298.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Selection of suitable antigens is critical for the development of cancer vaccines. Most desirable are over-expressed cell surface proteins that may serve as targets for both antibodies and T cells, thus maximizing a concerted immune response. Towards this goal, we characterized the relevance of tumour necrosis factor-α-converting enzyme (ADAM17) for such targeted therapeutics. ADAM17 is one of the several metalloproteinases that play a key role in epidermal growth factor receptor (EGFR) signalling and has recently emerged as a new therapeutic target in several tumour types. In the present study, we analysed the expression profile of ADAM17 in a variety of normal and cancer cells of human origin and found that this protein is over-expressed on the surface of several types of cancer cells compared to the normal counterparts. Furthermore, we analysed the presentation of a human leucocyte antigen (HLA)-A2-restricted epitope from ADAM17 protein to specific T cells established from normal donors as well as ovarian cancer patients. Our analysis revealed that the HLA-A2-restricted epitope is processed efficiently and presented by various cancer cells and not by normal cells. Tumour-specific T cell activation results in the secretion of both interferon-γ and granzyme B that can be blocked by HLA-A2 specific antibodies. Collectively, our data present evidence that ADAM17 can be a potential target antigen to devise novel immunotherapeutic strategies against ovarian, breast and prostate cancer.
Collapse
Affiliation(s)
- G Sinnathamby
- Immunotope, Inc., The Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Soluble plasma HLA peptidome as a potential source for cancer biomarkers. Proc Natl Acad Sci U S A 2010; 107:18769-76. [PMID: 20974924 DOI: 10.1073/pnas.1008501107] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The HLA molecules are membrane-bound transporters that carry peptides from the cytoplasm to the cell surface for surveillance by circulating T lymphocytes. Although low levels of soluble HLA molecules (sHLA) are normally released into the blood, many types of tumor cells release larger amounts of these sHLA molecules, presumably to counter immune surveillance by T cells. Here we demonstrate that these sHLA molecules are still bound with their authentic peptide repertoires, similar to those of the membranal HLA molecules (mHLA). Therefore, a single immunoaffinity purification of the plasma sHLA molecules, starting with a few milliliters of patients' blood, allows for identification of very large sHLA peptidomes by mass spectrometry, forming a foundation for development of a simple and universal blood-based cancer diagnosis. The new methodology was validated using plasma and tumor cells of multiple-myeloma and leukemia patients, plasma of healthy controls, and with cultured cancer cells. The analyses identified thousands of sHLA peptides, including some cancer-related peptides, present among the sHLA peptidomes of the cancer patients. Furthermore, because the HLA peptides are the degradation products of the cellular proteins, this sHLA peptidomics approach opens the way for investigation of the patterns of protein synthesis and degradation within the tumor cells.
Collapse
|
19
|
Tomar N, De RK. Immunoinformatics: an integrated scenario. Immunology 2010; 131:153-68. [PMID: 20722763 PMCID: PMC2967261 DOI: 10.1111/j.1365-2567.2010.03330.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 06/12/2010] [Accepted: 06/21/2010] [Indexed: 12/11/2022] Open
Abstract
Genome sequencing of humans and other organisms has led to the accumulation of huge amounts of data, which include immunologically relevant data. A large volume of clinical data has been deposited in several immunological databases and as a result immunoinformatics has emerged as an important field which acts as an intersection between experimental immunology and computational approaches. It not only helps in dealing with the huge amount of data but also plays a role in defining new hypotheses related to immune responses. This article reviews classical immunology, different databases and prediction tools. It also describes applications of immunoinformatics in designing in silico vaccination and immune system modelling. All these efforts save time and reduce cost.
Collapse
Affiliation(s)
- Namrata Tomar
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
20
|
Fortier MH, Caron E, Hardy MP, Voisin G, Lemieux S, Perreault C, Thibault P. The MHC class I peptide repertoire is molded by the transcriptome. ACTA ACUST UNITED AC 2008; 205:595-610. [PMID: 18299400 PMCID: PMC2275383 DOI: 10.1084/jem.20071985] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Under steady-state conditions, major histocompatibility complex (MHC) I molecules are associated with self-peptides that are collectively referred to as the MHC class I peptide (MIP) repertoire. Very little is known about the genesis and molecular composition of the MIP repertoire. We developed a novel high-throughput mass spectrometry approach that yields an accurate definition of the nature and relative abundance of unlabeled peptides presented by MHC I molecules. We identified 189 and 196 MHC I-associated peptides from normal and neoplastic mouse thymocytes, respectively. By integrating our peptidomic data with global profiling of the transcriptome, we reached two conclusions. The MIP repertoire of primary mouse thymocytes is biased toward peptides derived from highly abundant transcripts and is enriched in peptides derived from cyclins/cyclin-dependent kinases and helicases. Furthermore, we found that approximately 25% of MHC I-associated peptides were differentially expressed on normal versus neoplastic thymocytes. Approximately half of those peptides are derived from molecules directly implicated in neoplastic transformation (e.g., components of the PI3K-AKT-mTOR pathway). In most cases, overexpression of MHC I peptides on cancer cells entailed posttranscriptional mechanisms. Our results show that high-throughput analysis and sequencing of MHC I-associated peptides yields unique insights into the genesis of the MIP repertoire in normal and neoplastic cells.
Collapse
Affiliation(s)
- Marie-Hélène Fortier
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
21
|
Alvarez I, Carrascal M, Canals F, Muixí L, Abián J, Jaraquemada D. Analysis of the HLA class I associated peptide repertoire in a hepatocellular carcinoma cell line reveals tumor-specific peptides as putative targets for immunotherapy. Proteomics Clin Appl 2007; 1:286-98. [DOI: 10.1002/prca.200600388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Abstract
Mass spectrometry has evolved as a technique suitable for the characterization of peptides and proteins beyond their linear sequence. The advantages of mass spectrometric sample analysis are high sensitivity, high mass accuracy, rapid analysis time and low sample consumption. In epitope mapping, the molecular structure of an antigen (the epitope or antigenic determinant) that interacts with the paratope (recognition surface) of the antibody is identified. To obtain information on linear, conformational and/or discontinuous epitopes, various approaches have been developed in conjunction with mass spectrometry. These methods include limited proteolysis and epitope footprinting, epitope excision and epitope extraction for linear epitopes and probing the surface accessibility of residues by differential chemical modifications of specific amino acid side chains or by differential hydrogen/deuterium exchange of the protein backbone amides for conformational and discontinuous epitopes. Epitope mapping by mass spectrometry is applicable in basic biochemical research and, with increasing robustness, should soon find its implementation in routine clinical diagnosis.
Collapse
Affiliation(s)
- Christine Hager-Braun
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
23
|
Weinzierl AO, Lemmel C, Schoor O, Müller M, Krüger T, Wernet D, Hennenlotter J, Stenzl A, Klingel K, Rammensee HG, Stevanovic S. Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface. Mol Cell Proteomics 2006; 6:102-13. [PMID: 17074750 DOI: 10.1074/mcp.m600310-mcp200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major histocompatibility complex (MHC) presents peptides derived from degraded cellular proteins to T-cells and is thus crucial for triggering specific immune responses against viral infections or cancer. Up to now, there has been no evidence for a correlation between levels of mRNA (the "transcriptome") and the density of MHC-peptide complexes (the "MHC ligandome") on cells. Because such dependences are of intrinsic importance for the detailed understanding of translation efficiency and protein turnover and thus for systems biology in general and for tumor immunotherapy in practical application, we quantitatively analyzed the levels of mRNA and corresponding MHC ligand densities in samples of renal cell carcinomas and their autologous normal kidney tissues. Relative quantification was carried out by gene chip analysis and by stable isotope peptide labeling, respectively. In comparing more than 270 pairs of gene expression and corresponding peptide presentation ratios, we demonstrate that there is no clear correlation (r = 0.32) between mRNA levels and corresponding MHC peptide levels in renal cell carcinoma. A significant number of peptides presented predominantly on tumor or normal tissue showed no or only minor changes in mRNA expression levels. In several cases, peptides could even be identified despite the virtual absence of the respective mRNA. Thus we conclude that a majority of epitopes from tumor-associated antigens will not be found in approaches based mainly on mRNA expression studies as mRNA expression reflects a distorted picture of the situation on the cell surface as visible for T-cells.
Collapse
Affiliation(s)
- Andreas O Weinzierl
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zarling AL, Polefrone JM, Evans AM, Mikesh LM, Shabanowitz J, Lewis ST, Engelhard VH, Hunt DF. Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy. Proc Natl Acad Sci U S A 2006; 103:14889-94. [PMID: 17001009 PMCID: PMC1595446 DOI: 10.1073/pnas.0604045103] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alterations in phosphorylation of cellular proteins are a hallmark of malignant transformation. Degradation of these phosphoproteins could generate cancer-specific class I MHC-associated phosphopeptides recognizable by CD8+ T lymphocytes. In a comparative analysis of phosphopeptides presented on the surface of melanoma, ovarian carcinoma, and B lymphoblastoid cells, we find 5 of 36 that are restricted to the solid tumors and common to both cancers. Differential presentation of these peptides can result from differential phosphorylation of the source proteins. Recognition of the peptides on cancer cells by phosphopeptide-specific CD8+ T lymphocytes validates the potential of these phosphopeptides as immunotherapeutic targets.
Collapse
Affiliation(s)
- Angela L. Zarling
- Beirne B. Carter Immunology Center and Department of Microbiology and
| | - Joy M. Polefrone
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
| | - Anne M. Evans
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
| | - Leann M. Mikesh
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
| | | | - Sarah T. Lewis
- Beirne B. Carter Immunology Center and Department of Microbiology and
| | | | - Donald F. Hunt
- Department of Pathology, University of Virginia, Charlottesville, VA 22908; and
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Abstract
Proteomics is a new scientific field aimed at the large-scale characterization of the protein constituents of biologic systems. It facilitates comparisons between different protein preparations by searching for minute differences in their protein expression repertoires and the patterns of their post-translational modifications. These attributes make proteomics perfectly suited for searching for proteins and peptides expressed exclusively or preferentially in cancer cells as candidates for cancer vaccines. The main proteomics technologies include 2D polyacrylamide gel electrophoresis, multidimensional high-performance liquid chromatography, mass spectrometry and protein arrays. Proteomics technologies used to analyze cancer culture cells, fresh tumor specimens, human leukocyte antigen peptides, serum and serum antibodies (serologic proteomics) have successfully identified tumor markers. Turning the potential vaccine candidates identified by proteomics technologies into clinical treatments awaits demonstration.
Collapse
Affiliation(s)
- Stacy H Shoshan
- Technion-Israel Institute of Technology, Department of Biology, Haifa 32000, Israel.
| | | |
Collapse
|
26
|
Egorov IK. Mouse models of efficient and inefficient anti-tumor immunity, with emphasis on minimal residual disease and tumor escape. Cancer Immunol Immunother 2006; 55:1-22. [PMID: 16091932 PMCID: PMC11030122 DOI: 10.1007/s00262-005-0007-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 03/25/2005] [Indexed: 10/25/2022]
Abstract
Tumor escape from the host immune response remains the major problem holding the development of immunotherapies for cancer. In this review, congenic mouse lines are discussed that differ dramatically in their ability to respond to tumors tested and, thereby, to survive or to succumb to the tumor and/or its metastases. This ability is under the control of either MHC class I or nontrivial MHC class II beta genes expressed in a small subpopulation of antigen-presenting cells. Two hypotheses can explain the results obtained so far: (1) emergence of tumor cell variants that escape the host immune response in morbid mice but are eliminated in survivors, and (2) tumor-induced immunosuppression, which is either efficient or not, depending on the congenic line used. It is argued that further experimentation on these congenics will allow to choose the correct hypothesis, and to characterize the mechanism(s) of elimination of minimal residual disease and prevention of tumor escape by the immune system of survivors as well as the reason(s) for its failure in morbid mice. It is also argued that the use of these models will substantially increase the chance to resolve the controversy of poor correlation of immunotherapy testing in mice with clinical results.
Collapse
Affiliation(s)
- Igor K Egorov
- The Jackson Laboratory, Bar Harbor, ME 04609-1500, USA,
| |
Collapse
|
27
|
Milner E, Barnea E, Beer I, Admon A. The turnover kinetics of major histocompatibility complex peptides of human cancer cells. Mol Cell Proteomics 2005; 5:357-65. [PMID: 16272561 DOI: 10.1074/mcp.m500241-mcp200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptides presented by the major histocompatibility complex (MHC) are derived from the degradation of cellular proteins. Thus, the repertoire of these peptides (the MHC peptidome) should correlate better with the cellular protein degradation scheme (the degradome) than with the cellular proteome. To test the validity of this statement and to determine whether the majority of MHC peptides are derived from short lived proteins, from defective ribosome products, or from regular long lived cellular proteins we analyzed in parallel the turnover kinetics of both MHC peptides and cellular proteins in the same cancer cells. The analysis was performed by pulse-chase experiments based on stable isotope labeling in tissue culture followed by capillary chromatography and tandem mass spectrometry. Indeed only a limited correlation was observed between the proteome and the MHC peptidome observed in the same cells. Moreover a detailed analysis of the turnover kinetics of the MHC peptides helped to assign their origin to normal, to short lived or long lived proteins, or to the defective ribosome products. Furthermore the analysis of the MHC peptides turnover kinetics helped to direct attention to abnormalities in the degradation schemes of their source proteins. These observations can be extended to search for cancer-related abnormalities in protein degradation, including those that lead to loss of tumor suppressors and cell cycle regulatory proteins.
Collapse
Affiliation(s)
- Elena Milner
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | | | | | | |
Collapse
|
28
|
Kolch W, Mischak H, Pitt AR. The molecular make-up of a tumour: proteomics in cancer research. Clin Sci (Lond) 2005; 108:369-83. [PMID: 15831087 DOI: 10.1042/cs20050006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The enormous progress in proteomics, enabled by recent advances in MS (mass spectrometry), has brought protein analysis back into the limelight of cancer research, reviving old areas as well as opening new fields of study. In this review, we discuss the basic features of proteomic technologies, including the basics of MS, and we consider the main current applications and challenges of proteomics in cancer research, including (i) protein expression profiling of tumours, tumour fluids and tumour cells; (ii) protein microarrays; (iii) mapping of cancer signalling pathways; (iv) pharmacoproteomics; (v) biomarkers for diagnosis, staging and monitoring of the disease and therapeutic response; and (vi) the immune response to cancer. All these applications continue to benefit from further technological advances, such as the development of quantitative proteomics methods, high-resolution, high-speed and high-sensitivity MS, functional protein assays, and advanced bioinformatics for data handling and interpretation. A major challenge will be the integration of proteomics with genomics and metabolomics data and their functional interpretation in conjunction with clinical results and epidemiology.
Collapse
Affiliation(s)
- Walter Kolch
- Sir Henry Wellcome Functional Genomics Facility, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
29
|
Panicot-Dubois L, Aubert M, Franceschi C, Mas E, Silvy F, Crotte C, Bernard JP, Lombardo D, Sadoulet MO. Monoclonal antibody 16D10 to the C-terminal domain of the feto-acinar pancreatic protein binds to membrane of human pancreatic tumoral SOJ-6 cells and inhibits the growth of tumor xenografts. Neoplasia 2005; 6:713-24. [PMID: 15720797 PMCID: PMC1531675 DOI: 10.1593/neo.04298] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Feto-acinar pancreatic protein (FAPP) characterized by mAbJ28 reactivity is a specific component associated with ontogenesis and behaves as an oncodevelopment-associated antigen. We attempted to determine whether pancreatic tumoral SOJ-6 cells are expressed at their surface FAPP antigens and to examine if specific antibodies directed against these FAPP epitopes could decrease the growth of pancreatic tumors in a mice model. For this purpose, we used specific antibodies against either the whole FAPP, the O-glycosylated C-terminal domain, or the N-terminal domain of the protein. Our results indicate that SOJ-6 cells expressed at their surface a 32-kDa peptide corresponding to the C-terminal domain of the FAPP. Furthermore, we show, by using endoproteinase Lys-C or geldanamycin, a drug able to impair the FAPP secretion, that this 32-kDa peptide expressed on the SOJ-6 cell surface comes from the degradation of the FAPP. Finally, an in vivo prospective study using a preventative tumor model in nude mice indicates that targeting this peptide by the use of mAb16D10 inhibits the growth of SOJ-6 xenografts. The specificity of mAb16D10 for pancreatic tumors and the possibility to obtain recombinant structures of mucin-like peptides recognized by mAb16D10 and mAbJ28 are promising tools in immunologic approaches to cure pancreatic cancers.
Collapse
Affiliation(s)
- Laurence Panicot-Dubois
- Institut National de la Santé et de la Recherche Médicale Unité 559 and EA 3289, Faculté de Médecine-Timone, Université de la Méditerranée, Marseilles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Burlet-Schiltz O, Claverol S, Gairin JE, Monsarrat B. The Use of Mass Spectrometry to Identify Antigens from Proteasome Processing. Methods Enzymol 2005; 405:264-300. [PMID: 16413318 DOI: 10.1016/s0076-6879(05)05011-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Mass spectrometry (MS) is a powerful tool for the characterization of antigenic peptides that play a major role in the immune system. Most of the major histocompatibility complex (MHC) class I peptides are generated during the degradation of intracellular proteins by the proteasome, a catalytic complex present in all eukaryotic cells. This chapter focuses on the contribution of MS to the understanding of the mechanisms of antigen processing by the proteasome. This knowledge may be valuable for the design of specific inhibitors of proteasome, which has recently been recognized as a therapeutic target in cancer therapies and for the development of efficient peptidic vaccines in immunotherapies. Examples from the literature have been chosen to illustrate how MS data can contribute first to the understanding of the mechanisms of proteasomal processing and, second, to the understanding of the crucial role of proteasome in cytotoxic T lymphocytes (CTL) activation. The general strategy based on MS analyses used in these studies is also described.
Collapse
|
31
|
Abstract
The MHC molecules present normal as well as disease-related and pathogen-derived peptides to T cells as a way of alerting the immune system of the health status of a cell. Proteomic technologies involving immunoaffinity purification are now extensively used to separate MHC complexes from their peptide cargo, and then the petides are sequenced by tandem mass spectrometry. The identified peptides are tested as vaccine candidates for viral diseases, immunostimulants for treating cancer, and immune-tolerance-inducing agents for autoimmune disorders. One of the challenges in devising novel HLA-peptide-based immunotherapies is to decipher whether a therapeutic window exists between the induction of tumor immunity and the onset of autoimmunity, which can have dangerous sequelae. This review will cover these topics with an overview of the vast possibilities emerging in the field of proteomic analyses of MHC-bound antigens as novel targets for immunotherapy.
Collapse
Affiliation(s)
- Stacy H Shoshan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
32
|
Abstract
Using more reliable and sophisticated protein biochemical techniques, it is possible to perform large scale, partly high-throughput characterization of the human proteome. Two-dimensional electrophoresis (2-DE) and mass spectrometry largely contribute to the identification of proteins and peptides. 2-DE has been used to study differential expression of peptides and proteins in various disease entities, searching for new diagnostic and therapeutic targets. However, 2-DE usually requires large amounts of starting material, is time-consuming, and reveals only a fraction of the proteins present in a given sample. More recently, the ProteinChip technology coupled with bioinformatics has gained considerable attention. This technique uses surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI TOF/MS) to screen any protein source for putative disease biomarkers in a spectrum from 2 to 20 kDa. Between 15,500 (low resolution SELDI TOF) and > 400,000 peptides and proteins (high-resolution SELDI-TOF) can be resolved from a small sample volume (microl-range). Several studies have provided evidence that ProteinChip technology is capable of detecting early stage cancer by its unique cancer-specific proteomic finger prints, with sensitivities and specificities reaching far beyond well established serum-based tumor markers. In this review, we summarize the recent developments of proteomics in research and pathology, and critically discuss putative limitations and future applications of disease-specific biomarkers. Special emphasis is put on the former Human Protein Index project.
Collapse
Affiliation(s)
- Christoph Röcken
- Department of Pathology, Otto-von-Guericke-University, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | | | |
Collapse
|
33
|
Purcell AW, Gorman JJ. Immunoproteomics: Mass spectrometry-based methods to study the targets of the immune response. Mol Cell Proteomics 2004; 3:193-208. [PMID: 14718575 DOI: 10.1074/mcp.r300013-mcp200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian immune system has evolved to display fragments of protein antigens derived from microbial pathogens to immune effector cells. These fragments are typically peptides liberated from the intact antigens through distinct proteolytic mechanisms that are subsequently transported to the cell surface bound to chaperone-like receptors known as major histocompatibility complex (MHC) molecules. These complexes are then scrutinized by effector T cells that express clonally distributed T cell receptors with specificity for specific MHC-peptide complexes. In normal uninfected cells, this process of antigen processing and presentation occurs continuously, with the resultant array of self-antigen-derived peptides displayed on the surface of these cells. Changes in this peptide landscape of cells act to alert immune effector cells to changes in the intracellular environment that may be associated with infection, malignant transformation, or other abnormal cellular processes, resulting in a cascade of events that result in their elimination. Because peptides play such a crucial role in informing the immune system of infection with viral or microbial pathogens and the transformation of cells in malignancy, the tools of proteomics, in particular mass spectrometry, are ideally suited to study these immune responses at a molecular level. Here we review recent advances in the studies of immune responses that have utilized mass spectrometry and associated technologies, with specific examples from collaboration between our laboratories.
Collapse
Affiliation(s)
- A W Purcell
- Department of Microbiology and Immunology and ImmunoID, The University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
34
|
Yewdell JW, Reits E, Neefjes J. Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat Rev Immunol 2004; 3:952-61. [PMID: 14647477 DOI: 10.1038/nri1250] [Citation(s) in RCA: 317] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0440, USA
| | | | | |
Collapse
|