1
|
Connexin43 represents an important regulator for Sertoli cell morphology, Sertoli cell nuclear ultrastructure, and Sertoli cell maturation. Sci Rep 2022; 12:12898. [PMID: 35902708 PMCID: PMC9334284 DOI: 10.1038/s41598-022-16919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
The Sertoli cell (SC)-specific knockout (KO) of connexin43 (Cx43) was shown to be an effector of multiple histological changes in tubular morphology, resulting in germ cell loss through to a Sertoli-cell-only (SCO) phenotype and vacuolated seminiferous tubules containing SC-clusters. Our present study focused on the effects of Cx43 loss on SC ultrastructure. Using serial block-face scanning electron microscopy (SBF-SEM), we could confirm previous results. Ultrastructural analysis of Sertoli cell nuclei (SCN) revealed that these appear in clusters with a phenotype resembling immature/proliferating SCs in KO mice. Surprisingly, SCs of fertile wild type (WT) mice contained SCN with a predominantly smooth surface instead of deep indentations of the nuclear envelope, suggesting that these indentations do not correlate with germ cell support or spermatogenesis. SBF-SEM facilitated the precise examination of clustered SCs. Even if the exact maturation state of mutant SCs remained unclear, our study could detect indications of cellular senescence as well as immaturity, emphasising that Cx43 affects SC maturation. Moreover, Sudan III staining and transmission electron microscopy (TEM) demonstrated an altered lipid metabolism in SCs of Cx43 deficient mice.
Collapse
|
2
|
Molele RA, Mahdy MAA, Zakariah M, Ibrahim MIA, Fosgate GT, Brown G. Age-related histomorphometric and ultrastructural changes in the Sertoli cells of Japanese quail (Coturnix Coturnix japonica). Tissue Cell 2021; 73:101650. [PMID: 34555776 DOI: 10.1016/j.tice.2021.101650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022]
Abstract
Prepared sections from pre-pubertal, pubertal, adult, and aged Japanese quail testes were examined by light microscopy and transmission electron microscopy (TEM) and measurements of seminiferous tubular diameter (STD), luminal diameter (SLD), epithelial height (SEH) and cross-sectional area of the seminiferous tubules (AST) were taken using an image analyzer. Apoptotic Sertoli cells with features such as cell shrinkage and chromatin condensation were observed in pre-pubertal and aged quail. There was a significant difference between the mean Sertoli cell number (SCN), SLD, SEH, STD and AST among the four age groups (P < 0.001). The highest SCN (mean ± standard error) was recorded in the adult (30.53 ± 0.42), with the aged group displaying the lowest mean (11.80 ± 0.27) SCN. Spearman's rho correlation coefficients demonstrated a strong relationship between the SCN and SEH in the pubertal (ρ=0.915; P < 0.001), adult (ρ=0.878; P < 0.001), and aged (ρ=0.858; P < 0.001) groups, while a significant moderate correlation was observed in the pre-pubertal (ρ=0.606; P < 0.001) group. There were significant moderate correlations between the SCN and STD in the pre-pubertal (ρ=0.445; P < 0.001), pubertal (ρ=0.653; P < 0.001), adult (ρ=0.440; P < 0.001), and aged (ρ=0.514; P < 0.001) groups. Furthermore, significant moderate correlations were estimated between the SCN and AST in the pre-pubertal (ρ=0.453; P < 0.001), pubertal (ρ=0.661; P < 0.001), adult (ρ=0.393; P = 0.001), and aged (ρ=0.498; P < 0.001) groups. This study provides baseline data on the morphology and development of the Sertoli cell, as well as testicular morphometry in avian species during the pre-pubertal, pubertal, adult, and aged stages using the Japanese quail as a model.
Collapse
Affiliation(s)
- Reneilwe A Molele
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
| | - Mohamed A A Mahdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Musa Zakariah
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa; Department of Veterinary Anatomy, Faculty of Veterinary Medicine, PMB 1069 University of Maiduguri, Maiduguri, Nigeria
| | - Mohammed I A Ibrahim
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa; Department of Basic Science, University of West Kordofan, West Kordofan State, Sudan
| | - Geoffrey T Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Geoffrey Brown
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| |
Collapse
|
3
|
Lara NDLEM, Costa GMJ, Figueiredo AFA, de França LR. The Sertoli cell: what can we learn from different vertebrate models? Anim Reprod 2020; 16:81-92. [PMID: 33299481 PMCID: PMC7720927 DOI: 10.21451/1984-3143-ar2018-125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Besides having medical applications, comparative studies on reproductive biology are very useful, providing, for instance, essential knowledge for basic, conservation and biotechnological research. In order to maintain the reproductive potential and the survival of all vertebrate species, both sperm and steroid production need to occur inside the testis. From the approximately fifty thousand vertebrate species still alive, very few species are already investigated; however, our knowledge regarding Sertoli cell biology is quite good. In this regard, it is already known that since testis differentiation the Sertoli cells are the somatic cells in charge of supporting and orchestrating germ cells during development and full spermatogenesis in adult animals. In the present review, we highlight key aspects related to Sertoli cell biology in vertebrates and show that this key testis somatic cell presents huge and intrinsic plasticity, particularly when cystic (fish and amphibians) and non-cystic (reptiles, birds and mammals) spermatogenesis is compared. In particular, we briefly discuss the main aspects related to Sertoli cells functions, interactions with germ cells, Sertoli cells proliferation and efficiency, as well as those regarding spermatogonial stem cell niche regulation, which are crucial aspects responsible for the magnitude of sperm production. Most importantly, we show that we could greatly benefit from investigations using different vertebrate experimental models, mainly now that there is a big concern regarding the decline in human sperm counts caused by a multitude of factors.
Collapse
Affiliation(s)
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luiz Renato de França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
França LR, Hess RA, Dufour JM, Hofmann MC, Griswold MD. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology 2016; 4:189-212. [PMID: 26846984 DOI: 10.1111/andr.12165] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
It has been one and a half centuries since Enrico Sertoli published the seminal discovery of the testicular 'nurse cell', not only a key cell in the testis, but indeed one of the most amazing cells in the vertebrate body. In this review, we begin by examining the three phases of morphological research that have occurred in the study of Sertoli cells, because microscopic anatomy was essentially the only scientific discipline available for about the first 75 years after the discovery. Biochemistry and molecular biology then changed all of biological sciences, including our understanding of the functions of Sertoli cells. Immunology and stem cell biology were not even topics of science in 1865, but they have now become major issues in our appreciation of Sertoli cell's role in spermatogenesis. We end with the universal importance and plasticity of function by comparing Sertoli cells in fish, amphibians, and mammals. In these various classes of vertebrates, Sertoli cells have quite different modes of proliferation and epithelial maintenance, cystic vs. tubular formation, yet accomplish essentially the same function but in strikingly different ways.
Collapse
Affiliation(s)
- L R França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - R A Hess
- Reproductive Biology and Toxicology, Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - J M Dufour
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - M C Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M D Griswold
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
5
|
Santamaria M, Pardo-Saganta A, Alvarez-Asiain L, Di Scala M, Qian C, Prieto J, Avila MA. Nuclear α1-antichymotrypsin promotes chromatin condensation and inhibits proliferation of human hepatocellular carcinoma cells. Gastroenterology 2013; 144:818-828.e4. [PMID: 23295442 DOI: 10.1053/j.gastro.2012.12.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS α1-Antichymotrypsin (α1-ACT), a member of the serpin family (SERPINA3), is an acute-phase protein secreted by hepatocytes in response to cytokines such as oncostatin M. α1-ACT is a protease inhibitor thought to limit tissue damage produced by excessive inflammation-associated proteolysis. However, α1-ACT also is detected in the nuclei of cells, where its activities are unknown. Expression of α1-ACT is down-regulated in human hepatocellular carcinoma (HCC) tissues and cells; we examined its roles in liver regeneration and HCC proliferation. METHODS We measured levels of α1-ACT messenger RNA in human HCC samples and healthy liver tissue. We reduced levels of α1-ACT using targeted RNA interference in human HCC (HepG2) and mouse hepatocyte (AML12) cell lines, and overexpressed α1-ACT from lentiviral vectors in Huh7 (HCC) cells and adeno-associated viral vectors in livers of mice. We assessed proliferation, differentiation, and chromatin compaction in cultured cells, and liver regeneration and tumor formation in mice. RESULTS Reducing levels of α1-ACT promoted proliferation of HCC cells in vitro. Oncostatin M up-regulated α1-ACT expression and nuclear translocation, which inhibited HCC cell proliferation and activated differentiation of mouse hepatocytes. We identified amino acids required for α1-ACT nuclear localization, and found that α1-ACT inhibits cell-cycle progression and anchorage-independent proliferation of HCC cells. HCC cells that overexpressed α1-ACT formed smaller tumors in mice than HCC cells that did not express the protein. α1-ACT was observed to self-associate and polymerize in the nuclei of cells; nuclear α1-ACT strongly bound chromatin to promote a condensed state that could prevent cell proliferation. CONCLUSIONS α1-ACT localizes to the nuclei of hepatic cells to control chromatin condensation and proliferation. Overexpression of α1-ACT slows the growth of HCC xenograft tumors in nude mice.
Collapse
Affiliation(s)
- Mónica Santamaria
- Division of Hepatology and Gene Therapy, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | |
Collapse
|
6
|
Bielskienė K, Labeikytė D, Sjakste N, Bagdonienė L, Juodka B. Phosphatase activity in barley proteins tightly bound to DNA and its development-dependent changes. BIOCHEMISTRY (MOSCOW) 2012; 77:679-88. [PMID: 22817469 DOI: 10.1134/s0006297912060168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tightly bound proteins (TBPs), a protein group that remains attached to DNA either covalently or noncovalently after deproteinization, have been found in numerous eukaryotic species. Some TBPs isolated from mammalian and yeast cells possess phosphatase or kinase activity. The aim of this study was to characterize further TBPs in barley (Hordeum vulgare) cells. The spectra of TBPs varied in different organs of barley shoots (first leaves, coleoptile, and roots) and at different developmental stages of the plant. Some barley TBPs manifested phosphatase, probably Ser/Thr or dual Ser/Thr/Tyr activity. MALDI-TOF mass spectrometry of barley TBPs identified several proteins involved in chromatin rearrangement and regulation processes, including transcription factors, serpins, protein phosphatases and protein kinases, RNA helicases, and DNA topoisomerase II.
Collapse
Affiliation(s)
- K Bielskienė
- Laboratory of Molecular Oncology, Institute of Oncology, Vilnius University, P. Baublio 3b, Vilnius LT-08406, Lithuania
| | | | | | | | | |
Collapse
|
7
|
Han Y, Hong L, Zhong C, Chen Y, Wang Y, Mao X, Zhao D, Qiu J. Identification of new altered genes in rat cochleae with noise-induced hearing loss. Gene 2012; 499:318-22. [PMID: 22426293 DOI: 10.1016/j.gene.2012.02.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
Because genes that are highly expressed in the cochlea after noise stress may have crucial regulatory roles in hearing, the identification of these genes may be useful for restoring normal auditory function. This study assessed altered gene expression at 1h following the cessation of noise exposure by using microarrays and real-time polymerase chain reaction (qPCR) in rats. In addition, the auditory threshold shifts and morphological changes of hair cells were observed. This study indicated that applied noise induced outer hair cell loss and a 40-50 dB hearing loss. Totally 239 altered genes were involved in the immune system process, response to stress, or response to stimulus. The expression of five up-regulated genes (Reg3b, Lcn2, Serpina3n, Nob1 and Hamp) was confirmed by qPCR. Future experiments will focus on several of these new candidate genes and may provide insight into the underlying auditory pathophysiology.
Collapse
Affiliation(s)
- Yu Han
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sjakste N, Bielskiene K, Bagdoniene L, Labeikyte D, Gutcaits A, Vassetzky Y, Sjakste T. Tightly bound to DNA proteins: Possible universal substrates for intranuclear processes. Gene 2012; 492:54-64. [PMID: 22001404 DOI: 10.1016/j.gene.2011.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/08/2011] [Accepted: 09/22/2011] [Indexed: 01/05/2023]
Affiliation(s)
- N Sjakste
- Faculty of Medicine, University of Latvia, Šarlotes 1a, LV1001, Riga, Latvia
| | | | | | | | | | | | | |
Collapse
|
9
|
Sjakste N, Bagdoniene L, Gutcaits A, Labeikyte D, Bielskiene K, Trapiņa I, Muižnieks I, Vassetzky Y, Sjakste T. Proteins tightly bound to DNA: new data and old problems. BIOCHEMISTRY (MOSCOW) 2010; 75:1240-51. [PMID: 21166641 DOI: 10.1134/s0006297910100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteins tightly bound to DNA (TBP) comprise a group of proteins that remain bound to DNA after usual deproteinization procedures such as salting out and treatment with phenol or chloroform. TBP bind to DNA by covalent phosphotriester and noncovalent ionic and hydrogen bonds. Some TBP are conservative, and they are usually covalently bound to DNA. However, the TBP composition is very diverse and significantly different in different tissues and in different organisms. TBP include transcription factors, enzymes of the ubiquitin-proteasome system, phosphatases, protein kinases, serpins, and proteins of retrotransposons. Their distribution within the genome is nonrandom. However, the DNA primary structure or DNA curvatures do not define the affinity of TBP to DNA. But there are repetitive DNA sequences with which TBP interact more often. The TBP distribution within genes and chromosomes depends on a cell's physiological state, differentiation type, and stage of organism development. TBP do not interact with DNA in the sites of its association with nuclear matrix and most likely they are not components of the latter.
Collapse
|
10
|
Bielskiene K, Bagdoniene L, Juodka B, Lipinski M, Sjakste T, Vassetzky YS, Sjakste N. Transcription- and apoptosis-dependent long-range distribution of tight DNA-protein complexes in the chicken alpha-globin gene. DNA Cell Biol 2008; 27:615-21. [PMID: 18781829 DOI: 10.1089/dna.2008.0771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The proteins tightly bound to DNA (TBP) are a group of proteins that remain attached to DNA with covalent or noncovalent bonds after its deproteinization, and have been hypothesized to be involved in regulation of gene expression. To investigate this question further, oligonucleotide DNA arrays were used to determine the distribution of tightly bound proteins along a 100-kb DNA fragment surrounding the chicken alpha-globin gene domain in DNA from chicken erythrocytes, liver, and AEV-transformed HD3 (erythroblast) cells in different physiological conditions. DNA was fractionated into TBP-free (F) and TBP-enriched (R) fractions by separation on nitrocellulose, and these fractions were used as probes for hybridization with the microarray. In erythrocytes, the site 60 kb from the 5' end of the sequence and containing a LINE family CR1 repeat was TBP enriched, but in HD3 cells this sequence was devoid of TBPs. Thus cessation of transcription of the domain is followed by an F-R transition of this site. In apoptotic HD3 cells, TBPs remained attached to DNA only at a site situated 16 kb from the 5' end of the sequence. These data confirm and extend previous conclusions about the specificity of the DNA sequences that preferably form tight complexes with proteins and about the differentiation-specific distribution of the TBPs in different cell lineages. Binding of TBPs appears to be independent of primary DNA sequence.
Collapse
Affiliation(s)
- Kristina Bielskiene
- Department of Biochemistry and Biophysics, Vilnius University, Vilnius, Lithuania
| | | | | | | | | | | | | |
Collapse
|
11
|
Fletcher ST, Basketter DA. Proteomic analysis of the response of EpiDermTM cultures to sodium lauryl sulphate. Toxicol In Vitro 2006; 20:975-85. [PMID: 16469478 DOI: 10.1016/j.tiv.2005.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 12/20/2005] [Indexed: 11/28/2022]
Abstract
The analysis of EpiDerm cultures treated with the known skin irritant sodium lauryl sulphate (SLS) was performed using 2D-gel electrophoresis in order to understand the mechanism of action and thereby identify novel markers of skin irritation. A range of both broad and narrow pH gradient first-dimension gels were run (pH 4-7, 6-11, 4-5, 5-6 and 6-9) consistently followed by 12% SDS-PAGE in the second-dimension. Following treatment of EpiDerm with SLS, 67 proteins of interest were identified, of which 8 were selected as interesting: calmodulin-like skin protein, involucrin, epithelial cell marker protein, HS1, peroxiredoxin 1, serine protease inhibitor, KIAA0117 and ribosomal protein L17. Involucrin was confirmed as being up-regulated by both ELISA and Western blotting. The use of proteomics has identified a number of proteins which could be used as general markers for skin irritation and which may in particular be of value for the development of in vitro predictive models.
Collapse
Affiliation(s)
- S T Fletcher
- SEAC-Safety and Environmental Assurance Centre, Unilever Colworth, Sharnbrook, Bedfordshire MK44 1LQ, UK.
| | | |
Collapse
|
12
|
Petzelt C, Joswig G, Stammer H, Werner D. Cytotoxic cyplasin of the sea hare, Aaplysia punctata, cDNA cloning, and expression of bioactive recombinants in insect cells. Neoplasia 2002; 4:49-59. [PMID: 11922391 PMCID: PMC1503318 DOI: 10.1038/sj.neo.7900202] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A 56-kDa protein isolated from the mucus of the European sea hare Aplysia punctata shows a prefer ential toxicity to autonomously growing transformed mammalian cells. Cell death induced by this protein differs from both apoptosis and necrosis. The cytotoxic effects are irreversible and become apparent at nanomolar concentrations in a cell type-dependent manner. In contrast, injection of micromolar concentrations into mice is tolerated without apparent negative consequences. Microsequencing of the 56-kDa protein released a peptide sequence whose corresponding nucleotide sequence was used as probe to screen A. punctata RNA-based cDNA and to select cDNA clones encoding polypeptides comprising the target peptide. Two closely related cDNA were detected. The cDNA encoding a polypeptide 558 aa in length was considered to reflect a bonafide clone encoding the cytotoxic protein. Its protein-coding section was recloned in vectors suitable for expression in Escherichia coli, in mammalian cells, and in insect cells, respectively. The E. coli-expressed polypeptide was biologically inactive. Transfected mammalian cells expressed a cytotoxic factor and died thereof as if treated with the genuine cytotoxic protein. In contrast, transfected insect cells, which proved to be much less sensitive when treated with the genuine protein, expressed the cytotoxic factor and continued to proliferate, allowing to establish stable insect cell lines expressing sufficient amounts of the cytotoxic factor for further characterization.
Collapse
|