1
|
Binding of Gold(III) Porphyrin by the Pro-metastatic Regulatory Protein Human Galectin-3. Molecules 2019; 24:molecules24244561. [PMID: 31842510 PMCID: PMC6943629 DOI: 10.3390/molecules24244561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Gold(III) porphyrin presents an attractive alternative to the use of, for example, cisplatin in chemotherapy. However, approaches that allow to selectively target cancer cells are highly sought. Many plant and mammalian lectins have been shown to bind oligosaccharide sequences of the aberrant glycosylation pattern found on cancerous tumors. For example human galectin-3, of the galectin family specific for β-galactoside, is overexpressed in the extracellular matrix of tumorigenous and metastatic tissues. We searched for non-carbohydrate ligands for galectin-3 that can guide a cytotoxic drug to the cancer cells by maintaining its affinity for tumor associated carbohydrate antigens. Previous findings showed that zinc tetrasulfonatophenylporphyrin can bind galectin-3 with sub-micromolar affinity without disturbing lactose binding. Gold(III) porphyrin is not only cytotoxic to cancer cells, it knows also a potential application as photosensitiser in photodynamic therapy. We investigated the binding of gold(III) porphyrin to galectin-3 using different biophysical interaction techniques and demonstrated a low micromolar affinity of human galectin-3 for the cytotoxic compound. Co-crystallization attempts in order to understand the binding mode of gold porphyrin to galectin-3 failed, but molecular docking emphasized a highly populated secondary binding site that does not hinder lactose or Thomsen Friendenreich disaccharide binding. This suggests that gold(III) porphyrin might significantly enhance its concentration and delivery to cancer cells by binding to human galectin-3 that keeps its orientation towards tumor associated carbohydrate antigens.
Collapse
|
2
|
Bayón C, Cortés Á, Berenguer J, Hernáiz MJ. Highly efficient enzymatic synthesis of Galβ-(1→3)-GalNAc and Galβ-(1→3)-GlcNAc in ionic liquids. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Lichtenstein RG, Rabinovich GA. Glycobiology of cell death: when glycans and lectins govern cell fate. Cell Death Differ 2013; 20:976-86. [PMID: 23703323 DOI: 10.1038/cdd.2013.50] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/08/2013] [Accepted: 04/16/2013] [Indexed: 02/04/2023] Open
Abstract
Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs. Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during physiologic and pathologic settings.
Collapse
Affiliation(s)
- R G Lichtenstein
- Avram and Stella Goren-Goldstein, Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|
4
|
Bayón C, Cortés Á, Aires-Trapote A, Civera C, Hernáiz MJ. Highly efficient and regioselective enzymatic synthesis of β-(1→3) galactosides in biosolvents. RSC Adv 2013. [DOI: 10.1039/c3ra40860d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
5
|
McGreal EP. Structural basis of pattern recognition by innate immune molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:139-61. [PMID: 19799117 DOI: 10.1007/978-1-4419-0901-5_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The importance of the innate immune system as a first line defence against pathogenic challenge has long been recognised. Over the last decade the identity of many of the key molecules mediating innate host defence have been clarified and a model of self/ nonself discrimination by families of pattern recognition receptors (PRRs) has emerged. Although a large amount of information is now available concerning the action of these innate immune molecules at the level of the cell and organism, little is known about the molecular interface between pathogens and innate immune recognition molecules. In this chapter the molecular basis for innate immune discrimination of a wide variety of pathogen derived molecules is discussed in the context of the emerging literature.
Collapse
Affiliation(s)
- Eamon P McGreal
- Department of Child Health, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|
6
|
Rapoport EM, Kurmyshkina OV, Bovin NV. Mammalian galectins: structure, carbohydrate specificity, and functions. BIOCHEMISTRY (MOSCOW) 2008; 73:393-405. [PMID: 18457568 DOI: 10.1134/s0006297908040032] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Galectins are a family of beta-galactoside binding lectins, homological by a sequence of the carbohydrate-binding site. In this review literature data about structure and carbohydrate specificity of galectins are discussed. The role of galectins in the regulation of cell adhesion in immune response, inflammation, and cancer progression is considered.
Collapse
Affiliation(s)
- E M Rapoport
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | | |
Collapse
|
7
|
Azuma Y, Sato H, Higai K, Matsumoto K. Enhanced expression of membrane-associated sialidase Neu3 decreases GD3 and increases GM3 on the surface of Jurkat cells during etoposide-induced apoptosis. Biol Pharm Bull 2007; 30:1680-4. [PMID: 17827720 DOI: 10.1248/bpb.30.1680] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that, in Jurkat human T cells, the topoisomerase II inhibitor etoposide enhances sialidase activity and reduces cell surface sialic acid levels at an early stage of apoptosis and that the decreases in sialic acid are suppressed by the sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid [Azuma Y., et al., Glycoconj. J., 17, 301-306 (2000)]. In the current studies, we treated Jurkat cells with etoposide and examined the changes in the cell surface levels of gangliosides GM1, GM2, GM3, GD1a, and GD3 at physiological pH using anti-ganglioside antibodies. We also examined the sialidase activity on the cell surface using 4-methylumbelliferyl N-acetylneuraminic acid and measured the mRNA expression of the plasma membrane-associated sialidase Neu3 and the lysozomal Neu1 using real-time PCR. We found an increase in GM3 and a decrease in GD3 during the early stage (4 h) of etoposide-induced apoptosis that preceded the increase in cell surface exposure of phosphatidylserine (4 to 6 h). The caspase 3 inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde significantly suppressed changes in GM3 and GD3 and blocked the enhanced cell surface sialidase activity. Furthermore, etoposide caused a gradual up-regulation of Neu3 mRNA expression but not Neu1 mRNA expression. Enhanced Neu3 mRNA expression was suppressed in the presence of caspase 3 inhibitor. These results indicate that Neu3 is up-regulated in Jurkat cells undergoing etoposide-induced apoptosis through intracellular signaling events downstream of caspase 3 activation and that enhanced Neu3 activity is closely related to the changes of cell surface ganglioside composition.
Collapse
Affiliation(s)
- Yutaro Azuma
- Department of Clinical Chemistry, School of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan.
| | | | | | | |
Collapse
|
8
|
Kirilina EA, Suvorov NI, Popova SS, Khaidukov SV, Rapoport EM, Fonina LA, Mikhailova AA. Induction of differentiation in leukemic cell strains with myelopeptide-4. Bull Exp Biol Med 2006; 140:554-7. [PMID: 16758623 DOI: 10.1007/s10517-006-0022-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied the capacity of myelopeptide-4 (regulatory peptide of the bone marrow origin) to induce terminal differentiation of HL-60 and K-562 leukemic cells. Myelopeptide-4 increased the expression of CD14 and CD38 differentiation antigens on the surface of HL-60 cells and of CD44 antigen on K-562 cells, induced the appearance of mature monocyte/macrophages in HL-60 culture and hemoglobin-producing cells in K-562 cell culture, and stimulated phagocytic activity of THP-1 leukemic cells. Myelopeptide-4 is an endogenous factor of cell differentiation, a prospective agent for antileukemic therapy.
Collapse
Affiliation(s)
- E A Kirilina
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | | | | | | | | | | | | |
Collapse
|
9
|
Rapoport EM, Sapot'ko YB, Pazynina GV, Bojenko VK, Bovin NV. Sialoside-binding macrophage lectins in phagocytosis of apoptotic bodies. BIOCHEMISTRY (MOSCOW) 2005; 70:330-8. [PMID: 15823088 DOI: 10.1007/s10541-005-0119-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Elimination of apoptotic bodies is one of the important functions of macrophages. The aim of this work was to study the role of macrophage lectins in this process. Macrophage lectins were probed with neoglycoconjugates Glyc-PAA-fluo where carbohydrate is linked to fluorescein-labeled polyacrylamide (MW 30 kD). It was shown that neoglycoconjugates containing a Neu5Acalpha2-3Gal fragment bound to macrophages isolated from blood of healthy donors. Besides, carbohydrate chains containing the same fragment were revealed on apoptotic bodies. Phagocytosis of apoptotic bodies by macrophages was inhibited with sialooligosaccharide ligands of siglec-5 and MAbs to siglec-5. Thus, siglec-5 expressed on macrophages could participate in phagocytosis of apoptotic bodies. In addition, the role of siglecs in engulfment of apoptotic bodies by tumor-associated macrophages was studied. The phagocytic potency of macrophages isolated from blood of breast cancer patients was lower than engulfment ability of macrophages obtained from healthy donors and depended on tumor degree. Staining of macrophages obtained from blood of tumor patients with sialylated Glyc-PAA-fluo probes was more intense than that of macrophages from healthy donors; phagocytosis of apoptotic bodies by tumor-associated macrophages was inhibited by carbohydrates that are known to be ligands for siglecs.
Collapse
Affiliation(s)
- E M Rapoport
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | | | | | | |
Collapse
|
10
|
Yuita H, Tsuiji M, Tajika Y, Matsumoto Y, Hirano K, Suzuki N, Irimura T. Retardation of removal of radiation-induced apoptotic cells in developing neural tubes in macrophage galactose-type C-type lectin-1-deficient mouse embryos. Glycobiology 2005; 15:1368-75. [PMID: 16096344 DOI: 10.1093/glycob/cwj028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MGL1/CD301a is a C-type lectin that recognizes galactose and N-acetylgalactosamine as monosaccharides and is expressed on limited populations of macrophages and dendritic cells at least in adult mice. In this study, pregnant mice with Mgl1+/- genotype were mated with Mgl1+/- or Mgl1-/- genotype males, and the embryos were used to assess a hypothesis that this molecule plays an important role in the clearance of apoptotic cells. After X-ray irradiation at 1 Gy of developing embryos at 10.5 days post coitus (d.p.c.), the number of Mgl1-/- pups was significantly reduced as compared with Mgl1+/+ pups. Distributions of MGL1-positive cells, MGL2-positive cells, and apoptotic cells were histologically examined in irradiated Mgl1+/+ embryos. MGL1-positive cells were detected in the neural tube in which many cells undergo apoptosis, whereas MGL2-positive cells were not observed. Biotinylated recombinant MGL1 bound a significant portion of the apoptotic cells. When Mgl1+/+ and Mgl1-/- embryos were examined for the presence of apoptotic cells, similar numbers of apoptotic cells gave rise, but the clearance of these cells was slower in Mgl1-/- embryos than in Mgl1+/+ embryos. These results strongly suggest that MGL1/CD301a is involved in the clearance of apoptotic cells. This process should be essential in the repair and normal development of X-ray-irradiated embryos.
Collapse
Affiliation(s)
- Hiroshi Yuita
- Department of Radiation Oncology, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Moiseeva EV, Rapoport EM, Bovin NV, Miroshnikov AI, Chaadaeva AV, Krasilshschikova MS, Bojenko VK, Bijleveld C, van Dijk JE, Den Otter W. Galectins as markers of aggressiveness of mouse mammary carcinoma: towards a lectin target therapy of human breast cancer. Breast Cancer Res Treat 2005; 91:227-41. [PMID: 15952056 DOI: 10.1007/s10549-005-0289-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Galectins, beta-galactoside binding proteins, expressed selectively in human breast carcinoma are attractive targets to employ lectin-aimed therapeutics. We examined beta-galactoside binding potency of neoplastic cells using fluorescein-labelled synthetic glycoconjugates as probes for flow cytometry. As a result, surface beta-galactoside binding proteins/galectins were discovered on mouse mammary carcinoma cells in vitro and in vivo unlike non-malignant cells from the several tissues; and asialo-GM1 ganglioside carbohydrate part--containing probe was the most specific one. However, in liver and lung metastatic cells galectins seem to be expressed within cytoplasm and/or nuclei. Galectin expression correlated directly with aggressive tumour potential in the A/Sn transplantable model similar to findings in several human breast carcinoma cell lines. However, galectin expression was reduced during tumour progression in more aggressive forms of spontaneous BLRB mammary carcinomas like it was shown for human breast carcinoma specimens. Analysis of the histopathological data led, however, to the conclusion that galectin expression hardly might be a suitable marker of aggressiveness of heterogeneous mammary carcinomas as the observed level of galectin expression is influenced by the amount of the stroma in a tumour sample and/or probably, galectin expression inversely correlates with tumour aggressiveness during the initial and advanced steps of mammary tumour progression. We conclude that surface beta-galactoside binding proteins/galectins that are selectively expressed during mouse mammary carcinoma progression, similarly to human breast carcinomas, seem to be proper targets for asialo-GM1-vectored cytotoxics and our mouse model system might be a relevant instrument to further test novel modes of anti-breast cancer therapy.
Collapse
Affiliation(s)
- E V Moiseeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Watanabe Y, Shiratsuchi A, Shimizu K, Takizawa T, Nakanishi Y. Stimulation of phagocytosis of influenza virus-infected cells through surface desialylation of macrophages by viral neuraminidase. Microbiol Immunol 2005; 48:875-81. [PMID: 15557745 DOI: 10.1111/j.1348-0421.2004.tb03619.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cells infected with influenza A virus undergo apoptosis and become susceptible to phosphatidylserine-mediated phagocytosis by macrophages. This study was undertaken to elucidate the mechanism underlying our previous finding that the activity of viral neuraminidase (NA) is required for efficient phagocytosis. Treatment of macrophages, not influenza virus-infected cells, with Arthrobacter ureafaciens NA or virus-infected cells expressing viral NA augmented the level of phagocytosis of virus-infected cells but not of latex beads or cells undergoing Fas-induced apoptosis. Oligosaccharides, including sialyllactose, bound to influenza virus-infected cells and inhibited phagocytosis by macrophages. These results indicate that surface desialylation of macrophages by influenza virus NA modulates the mode of association between macrophages and target virus-infected cells and stimulates phosphatidylserine-mediated phagocytosis.
Collapse
Affiliation(s)
- Yuichi Watanabe
- Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
13
|
Abstract
As evidenced by the reviews in this special issue of Glycoconjugate Journal, much research is focused on determining functions for mammalian galectins. However, the identification of precise functions for mammalian galectins may be complicated by redundancy in tissue expression and in target cell recognition of the many mammalian galectins. Therefore, lower organisms may be useful in deciphering precise functions for galectins. Unfortunately, some genetically manipulable model systems such as Caenorhabditis elegans may have more galectins than mammals. Recently, galectins were identified in two well-studied insect systems, Drosophila melanogaster and Anopheles gambiae. In addition to the powerful genetic manipulation available in these insect models, there is a sophisticated understanding of many biological processes in these organisms that can be directly compared and applied to mammalian systems. Understanding the roles of galectins in insects may provide insight into precise functions of galectins in mammals.
Collapse
Affiliation(s)
- Karen E Pace
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095-1732, USA
| | | |
Collapse
|