1
|
Souza EFC, Soratto RP, Fernandes AM, Gupta SK. Performance of conventional and enhanced-efficiency nitrogen fertilizers on potato tuber mineral composition and marketability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3078-3087. [PMID: 34778954 DOI: 10.1002/jsfa.11648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/30/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Potato is an essential crop for global food security, and its cultivation requires a significant amount of readily available nitrogen (N) to ensure tuber quality. Therefore, managing N with enhanced-efficiency fertilizers becomes a potential strategy to meet the seasonal potato N demand. A 3 site-years (SYs) study was conducted to assess the marketable attributes and mineral composition of table-stock potato in response to N rates and fertilizers urea, ammonium sulfate and ammonium sulfate nitrate (ASN) with nitrification inhibitor dimethylpyrazole phosphate (DMPP). RESULTS At 75% of recommended N rate (RNR), ammonium sulfate and ASN+DMPP ensured marketable tuber yields equivalent to that observed at 100% of RNR. Urea promoted greater tuber K and Mg concentrations than ammonium sulfate and ASN+DMPP. Although inconsistent across SYs, ASN+DMPP generally reduced starch and reducing sugars contents and increased pulp pH and protein content than other fertilizers. Increasing N rates from 50% up to 75% and 100% of RNR increased marketable tuber yields and protein content, whereas soluble solids increased from 50% to 100% of RNR. Conversely, increasing N rates from zero to 75% of RNR reduced tuber firmness, whereas N application reduced tuber P concentration, regardless of N rates. CONCLUSION Although ASN+DMPP showed potential for increasing marketable tuber yield and protein content, potatoes receiving ammonium sulfate and ASN+DMPP lowered tuber K and Mg concentrations compared to those receiving urea. Overall, potato tuber quality improvements are N source-specific, demanding strategies under which these fertilizers can ensure/improve tuber nutritional composition along with size quality. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Emerson F C Souza
- Department of Soil, Water and Climate, University of Minnesota, St Paul, MN, USA
| | - Rogério P Soratto
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (UNESP), Universitária Ave, 3780, 18610-034, Botucatu-SP, Brazil
- Center of Tropical Roots and Starches, São Paulo State University (UNESP), Botucatu, Brazil
| | - Adalton M Fernandes
- Center of Tropical Roots and Starches, São Paulo State University (UNESP), Botucatu, Brazil
| | - Sanjay K Gupta
- Department of Soil, Water and Climate, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
2
|
SHARMA KAMALDEV, PATIL GAURAV, KIRAN ASHA. Characterization and differential expression of sucrose and starch metabolism genes in contrasting chickpea (Cicer arietinum L.) genotypes under low temperature. J Genet 2021. [DOI: 10.1007/s12041-021-01317-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Liu S, Zhong H, Wang Q, Liu C, Li T, Peng Z, Li Y, Zhang H, Liao J, Huang Y, Wang Z. Global Analysis of UDP Glucose Pyrophosphorylase (UDPGP) Gene Family in Plants: Conserved Evolution Involved in Cell Death. FRONTIERS IN PLANT SCIENCE 2021; 12:681719. [PMID: 34177996 PMCID: PMC8222925 DOI: 10.3389/fpls.2021.681719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/26/2021] [Indexed: 05/28/2023]
Abstract
UDP glucose pyrophosphorylase (UDPGP) family genes have been reported to play essential roles in cell death or individual survival. However, a systematic analysis on UDPGP gene family has not been performed yet. In this study, a total of 454 UDPGP proteins from 76 different species were analyzed. The analyses of the phylogenetic tree and orthogroups divided UDPGPs into three clades, including UDP-N-acetylglucosamine pyrophosphorylase (UAP), UDP-glucose pyrophosphorylase (UGP, containing UGP-A and UGP-B), and UDP-sugar pyrophosphorylase (USP). The evolutionary history of the UDPGPs indicated that the members of UAP, USP, and UGP-B were relatively conserved while varied in UGP-A. Homologous sequences of UGP-B and USP were found only in plants. The expression profile of UDPGP genes in Oryza sativa was mainly motivated under jasmonic acid (JA), abscisic acid (ABA), cadmium, and cold treatments, indicating that UDPGPs may play an important role in plant development and environment endurance. The key amino acids regulating the activity of UDPGPs were analyzed, and almost all of them were located in the NB-loop, SB-loop, or conserved motifs. Analysis of the natural variants of UDPGPs in rice revealed that only a few missense mutants existed in coding sequences (CDSs), and most of the resulting variations were located in the non-motif sites, indicating the conserved structure and function of UDPGPs in the evolution. Furthermore, alternative splicing may play a key role in regulating the activity of UDPGPs. The spatial structure prediction, enzymatic analysis, and transgenic verification of UAP isoforms illustrated that the loss of N- and C-terminal sequences did not affect the overall 3D structures, but the N- and C-terminal sequences are important for UAP genes to maintain their enzymatic activity. These results revealed a conserved UDPGP gene family and provided valuable information for further deep functional investigation of the UDPGP gene family in plants.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Hua Zhong
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Caixiang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Ting Li
- Youth League Committee, Jiangxi Agricultural University, Nanchang, China
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
4
|
Tai HH, Lagüe M, Thomson S, Aurousseau F, Neilson J, Murphy A, Bizimungu B, Davidson C, Deveaux V, Bègue Y, Wang HY, Xiong X, Jacobs JME. Tuber transcriptome profiling of eight potato cultivars with different cold-induced sweetening responses to cold storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:163-176. [PMID: 31756603 DOI: 10.1016/j.plaphy.2019.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 05/19/2023]
Abstract
Tubers are vegetative reproduction organs formed from underground extensions of the plant stem. Potato tubers are harvested and stored for months. Storage under cold temperatures of 2-4 °C is advantageous for supressing sprouting and diseases. However, development of reducing sugars can occur with cold storage through a process called cold-induced sweetening (CIS). CIS is undesirable as it leads to darkened color with fry processing. The purpose of the current study was to find differences in biological responses in eight cultivars with variation in CIS resistance. Transcriptome sequencing was done on tubers before and after cold storage and three approaches were taken for gene expression analysis: 1. Gene expression correlated with end-point glucose after cold storage, 2. Gene expression correlated with increased glucose after cold storage (after-before), and 3. Differential gene expression before and after cold storage. Cultivars with high CIS resistance (low glucose after cold) were found to increase expression of an invertase inhibitor gene and genes involved in DNA replication and repair after cold storage. The cultivars with low CIS resistance (high glucose after cold) showed increased expression of genes involved in abiotic stress response, gene expression, protein turnover and the mitochondria. There was a small number of genes with similar expression patterns for all cultivars including genes involved in cell wall strengthening and phospholipases. It is proposed that the pattern of gene expression is related to chilling-induced DNA damage repair and cold acclimation and that genetic variation in these processes are related to CIS.
Collapse
Affiliation(s)
- Helen H Tai
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada.
| | - Martin Lagüe
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| | - Frédérique Aurousseau
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Jonathan Neilson
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Agnes Murphy
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Benoit Bizimungu
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Charlotte Davidson
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Virginie Deveaux
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Yves Bègue
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Hui Ying Wang
- College of Horticulture and Landscape, Hunan Agriculture Univ, Hunan, Changsha, 410128, China
| | - Xingyao Xiong
- College of Horticulture and Landscape, Hunan Agriculture Univ, Hunan, Changsha, 410128, China
| | - Jeanne M E Jacobs
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| |
Collapse
|
5
|
Identification and impact of stable prognostic biochemical markers for cold-induced sweetening resistance on selection efficiency in potato (Solanum tuberosum L.) breeding programs. PLoS One 2019; 14:e0225411. [PMID: 31891570 PMCID: PMC6938367 DOI: 10.1371/journal.pone.0225411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/02/2019] [Indexed: 01/09/2023] Open
Abstract
Biochemical markers for cold-induced sweetening (CIS) resistance were tested for their stability over years and their use in selection of parents for crossing to achieve high selection efficiency in potato breeding programs. Two regulatory enzymes directly associated with reducing sugar (RS) accumulation during potato tubers cold storage were tested as a predictor for CIS resistance. These enzymes were studied in 33 potato clones from various breeding programs over four years. Clones with the presence of A-II isozymes of UDP-glucose pyrophosphorylase (UGPase) and low activity of vacuolar acid invertase (VAcInv) enzyme had increased resistance to cold-induced sweetening (CIS). Depending on the levels of these enzymes, clones were divided into class A, class B and class C. Clones categorized as class A had average RS of 0.73 mg per g FW after six months at 5.5°C storage. Class B and C had average RS of 1.15 and 3.80 mg per g FW respectively. The enzyme activity was closely associated with RS accumulation over long-term cold storage. The biochemical markers were found to be stable over the years. Repeated-measure analysis showed 75% chance of maintaining class from one year to the next and a 25% chance of switching, No clone switched between class A and class C, even across all four years. Application of these biochemical markers can identify clones with CIS resistance early in the selection process. Biochemical markers were used to select parents for crossing and six families were established. Results showed that with both parents from class A, 95% of their offspring had desirable glucose levels and chip color, which dropped to 52% when one parent was from class A and other from class B. These results suggest that two regulatory enzymes, i.e., UGPase and VAcInv, can be used as stable prognostic biochemical markers for CIS resistance for precise parent selection resulting in progenies with significantly higher percentage of clones with acceptable processing quality.
Collapse
|
6
|
Decker D, Kleczkowski LA. UDP-Sugar Producing Pyrophosphorylases: Distinct and Essential Enzymes With Overlapping Substrate Specificities, Providing de novo Precursors for Glycosylation Reactions. FRONTIERS IN PLANT SCIENCE 2019; 9:1822. [PMID: 30662444 PMCID: PMC6329318 DOI: 10.3389/fpls.2018.01822] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/23/2018] [Indexed: 05/02/2023]
Abstract
Nucleotide sugars are the key precursors for all glycosylation reactions and are required both for oligo- and polysaccharides synthesis and protein and lipid glycosylation. Among all nucleotide sugars, UDP-sugars are the most important precursors for biomass production in nature (e.g., synthesis of cellulose, hemicellulose, and pectins for cell wall production). Several recent studies have already suggested a potential role for UDP-Glc in plant growth and development, and UDP-Glc has also been suggested as a signaling molecule, in addition to its precursor function. In this review, we will cover primary mechanisms of formation of UDP-sugars, by focusing on UDP-sugar metabolizing pyrophosphorylases. The pyrophosphorylases can be divided into three families: UDP-Glc pyrophosphorylase (UGPase), UDP-sugar pyrophosphorylase (USPase), and UDP-N-acetyl glucosamine pyrophosphorylase (UAGPase), which can be distinguished both by their amino acid sequences and by differences in substrate specificity. Substrate specificities of these enzymes are discussed, along with structure-function relationships, based on their crystal structures and homology modeling. Earlier studies with transgenic plants have revealed that each of the pyrophosphorylases is essential for plant survival, and their loss or a decrease in activity results in reproductive impairment. This constitutes a problem when studying exact in vivo roles of the enzymes using classical reverse genetics approaches. Thus, strategies involving the use of specific inhibitors (reverse chemical genetics) are also discussed. Further characterization of the properties/roles of pyrophosphorylases should address fundamental questions dealing with mechanisms and control of carbohydrate synthesis and may allow to identify targets for manipulation of biomass production in plants.
Collapse
Affiliation(s)
| | - Leszek A. Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Decker D, Kleczkowski LA. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases. FRONTIERS IN PLANT SCIENCE 2017; 8:1610. [PMID: 28970843 PMCID: PMC5609113 DOI: 10.3389/fpls.2017.01610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/04/2017] [Indexed: 05/08/2023]
Abstract
UDP-sugars are essential precursors for glycosylation reactions producing cell wall polysaccharides, sucrose, glycoproteins, glycolipids, etc. Primary mechanisms of UDP sugar formation involve the action of at least three distinct pyrophosphorylases using UTP and sugar-1-P as substrates. Here, substrate specificities of barley and Arabidopsis (two isozymes) UDP-glucose pyrophosphorylases (UGPase), Arabidopsis UDP-sugar pyrophosphorylase (USPase) and Arabidopsis UDP-N-acetyl glucosamine pyrophosphorylase2 (UAGPase2) were investigated using a range of sugar-1-phosphates and nucleoside-triphosphates as substrates. Whereas all the enzymes preferentially used UTP as nucleotide donor, they differed in their specificity for sugar-1-P. UGPases had high activity with D-Glc-1-P, but could also react with Fru-1-P and Fru-2-P (Km values over 10 mM). Contrary to an earlier report, their activity with Gal-1-P was extremely low. USPase reacted with a range of sugar-1-phosphates, including D-Glc-1-P, D-Gal-1-P, D-GalA-1-P (Km of 1.3 mM), β-L-Ara-1-P and α-D-Fuc-1-P (Km of 3.4 mM), but not β-L-Fuc-1-P. In contrast, UAGPase2 reacted only with D-GlcNAc-1-P, D-GalNAc-1-P (Km of 1 mM) and, to some extent, D-Glc-1-P (Km of 3.2 mM). Generally, different conformations/substituents at C2, C4, and C5 of the pyranose ring of a sugar were crucial determinants of substrate specificity of a given pyrophosphorylase. Homology models of UDP-sugar binding to UGPase, USPase and UAGPase2 revealed more common amino acids for UDP binding than for sugar binding, reflecting differences in substrate specificity of these proteins. UAGPase2 was inhibited by a salicylate derivative that was earlier shown to affect UGPase and USPase activities, consistent with a common structural architecture of the three pyrophosphorylases. The results are discussed with respect to the role of the pyrophosphorylases in sugar activation for glycosylated end-products.
Collapse
|
8
|
Gupta SK, Sowokinos JR, Hahn IS. Regulation of UDP-glucose pyrophosphorylase isozyme UGP5 associated with cold-sweetening resistance in potatoes. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:679-690. [PMID: 17996328 DOI: 10.1016/j.jplph.2007.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 09/07/2007] [Accepted: 09/11/2007] [Indexed: 05/25/2023]
Abstract
The regulation of UDP-Glc pyrophosphorylase (UGPase) isozyme, UGP5, was investigated in potato tuber. The cDNA for UGP5 was cloned into the bacterial expression vector pET21d and recombinant (RC) enzyme was expressed in E. coli (BL21 star cells). The RC-UGP5 isozyme was purified to near homogeneity using salt precipitation, hydrophobic interaction, and anion-exchange column chromatography. Kinetic analysis revealed that in the synthesis direction, K(m) values for Glc-1-P (0.83 mM) and UTP (0.22 mM) were similar to those observed previously with the mother tuber (MT)-UGP5. In the pyrophosphorolysis direction, the K(m) values for UDP-Glc (0.68 mM) and PPi (0.56 mM) were slightly higher than those observed previously. Maximum reaction velocities (V(max)) for RC-UGP5 were also elevated. Since the molecular mass, charge, and amino acid sequence of the MT- and RC-UGP5 isozymes were identical, it was assumed that altered kinetic constants may be due to an improper folding of RC-UGP5 polypeptide. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and proteomic analysis demonstrated that the UGP5 isozyme was a single polypeptide with a calculated molecular mass of 51.8kDa consisting of 477 amino acids. Native PAGE and kinetic analysis revealed that this polypeptide was monomeric in nature. Immunoblotting with specific antibodies and LC-MS/MS data indicated that UGP5 did not require any post-translational modification (e.g., phosphorylation, O-glycosylation, oligomerization/de-oligomerization, or the presence of the regulatory 14-3-3 proteins) for its regulation. Additionally, the two closely associated isozymes UGP5 and UGP6 in the cv. Snowden are likely the result of allelic differences of UGPase at a single locus.
Collapse
Affiliation(s)
- Sanjay K Gupta
- Department of Horticultural Science, University of Minnesota, 305 Alderman Hall, 1970 Folwell Avenue, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
9
|
Sowokinos JR, Vigdorovich V, Abrahamsen M. Molecular cloning and sequence variation of UDP-glucose pyrophosphorylase cDNAs from potatoes sensitive and resistant to cold sweetening. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:947-55. [PMID: 15384406 DOI: 10.1016/j.jplph.2004.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RT-PCR was used to isolate seven cDNAs encoding uridine diphosphate-glucose pyrophosphorylase (UGPase) from six potato cultivars that differed markedly in their ability to sweeten in cold storage (2-4 degrees C). These sequences were compared to two potato UGPase-cDNAs previously published. All cDNAs were highly conserved (97.6-99.9%) and coded for polypeptides with 477 amino acids. The cDNAs could be placed into two sequence classes depending on whether they contained a BamH1 site at nucleotide positions 1315-1320. The presence of the BamH1 site (substitution of a C for a T at bp position 1320) did not lead to a change of an amino acid in the mature protein. There were 27 nucleotide polymorphisms that co-segregated along with the BamH1 site, five of which led to an amino acid change (i.e., bp positions (5) Thr for Ala; (30) Glu for Asp; (82) Lys for Asn; (445) Lys for Glu; and (450) Val for Ile). All of the encoded polypeptides contained the five highly conserved lysine residues located at positions 263, 329, 367, 409 and 410 that have been demonstrated necessary for catalytic activity of UGPase. All polypeptides had putative glycosylation sites at amino acid positions 168 (NQS) and 307 (NLS). The Ser at position 420 provided a putative site for phosphorylation as well as a binding motif for 14-3-3 proteins.
Collapse
Affiliation(s)
- Joseph R Sowokinos
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA.
| | | | | |
Collapse
|
10
|
Current awareness in flavour and fragrance. FLAVOUR FRAG J 2003. [DOI: 10.1002/ffj.1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|