1
|
Lazar CS, Schwab VF, Ueberschaar N, Pohnert G, Trumbore S, Küsel K. Microbial degradation and assimilation of veratric acid in oxic and anoxic groundwaters. Front Microbiol 2023; 14:1252498. [PMID: 37901809 PMCID: PMC10602745 DOI: 10.3389/fmicb.2023.1252498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Microbial communities are key players in groundwater ecosystems. In this dark environment, heterotrophic microbes rely on biomass produced by the activity of lithoautotrophs or on the degradation of organic matter seeping from the surface. Most studies on bacterial diversity in groundwater habitats are based on 16S gene sequencing and full genome reconstructions showing potential metabolic pathways used in these habitats. However, molecular-based studies do not allow for the assessment of population dynamics over time or the assimilation of specific compounds and their biochemical transformation by microbial communities. Therefore, in this study, we combined DNA-, phospholipid fatty acid-, and metabolomic-stable isotope probing to target and identify heterotrophic bacteria in the groundwater setting of the Hainich Critical Zone Exploratory (CZE), focusing on 2 aquifers with different physico-chemical conditions (oxic and anoxic). We incubated groundwater from 4 different wells using either 13C-labeled veratric acid (a lignin-derived compound) (single labeling) or a combination of 13CO2 and D-labeled veratric acid (dual labeling). Our results show that heterotrophic activities dominate all groundwater sites. We identified bacteria with the potential to break down veratric acid (Sphingobium or Microbacterium). We observed differences in heterotrophic activities between the oxic and anoxic aquifers, indicating local adaptations of bacterial populations. The dual labeling experiments suggested that the serine pathway is an important carbon assimilation pathway and that organic matter was an important source of hydrogen in the newly produced lipids. These experiments also yielded different labeled taxa compared to the single labeling experiments, showing that there exists a complex interaction network in the groundwater habitats.
Collapse
Affiliation(s)
- Cassandre Sara Lazar
- Department of Biological Sciences, University of Quebec at Montreal (UQAM), Montreal, QC, Canada
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Valérie F. Schwab
- Department Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Nico Ueberschaar
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Susan Trumbore
- Department Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Investigating the Chemolithoautotrophic and Formate Metabolism of Nitrospira moscoviensis by Constraint-Based Metabolic Modeling and 13C-Tracer Analysis. mSystems 2021; 6:e0017321. [PMID: 34402644 PMCID: PMC8407350 DOI: 10.1128/msystems.00173-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nitrite-oxidizing bacteria belonging to the genus Nitrospira mediate a key step in nitrification and play important roles in the biogeochemical nitrogen cycle and wastewater treatment. While these organisms have recently been shown to exhibit metabolic flexibility beyond their chemolithoautotrophic lifestyle, including the use of simple organic compounds to fuel their energy metabolism, the metabolic networks controlling their autotrophic and mixotrophic growth remain poorly understood. Here, we reconstructed a genome-scale metabolic model for Nitrospira moscoviensis (iNmo686) and used flux balance analysis to evaluate the metabolic networks controlling autotrophic and formatotrophic growth on nitrite and formate, respectively. Subsequently, proteomic analysis and [13C]bicarbonate and [13C]formate tracer experiments coupled to metabolomic analysis were performed to experimentally validate model predictions. Our findings corroborate that N. moscoviensis uses the reductive tricarboxylic acid cycle for CO2 fixation, and we also show that N. moscoviensis can indirectly use formate as a carbon source by oxidizing it first to CO2 followed by reassimilation, rather than direct incorporation via the reductive glycine pathway. Our study offers the first measurements of Nitrospira’s in vivo central carbon metabolism and provides a quantitative tool that can be used for understanding and predicting their metabolic processes. IMPORTANCENitrospira spp. are globally abundant nitrifying bacteria in soil and aquatic ecosystems and in wastewater treatment plants, where they control the oxidation of nitrite to nitrate. Despite their critical contribution to nitrogen cycling across diverse environments, detailed understanding of their metabolic network and prediction of their function under different environmental conditions remains a major challenge. Here, we provide the first constraint-based metabolic model of Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II and subsequently validate this model using proteomics and 13C-tracers combined with intracellular metabolomic analysis. The resulting genome-scale model will serve as a knowledge base of Nitrospira metabolism and lays the foundation for quantitative systems biology studies of these globally important nitrite-oxidizing bacteria.
Collapse
|
3
|
de Kluijver A, Nierop KGJ, Morganti TM, Bart MC, Slaby BM, Hanz U, de Goeij JM, Mienis F, Middelburg JJ. Bacterial precursors and unsaturated long-chain fatty acids are biomarkers of North-Atlantic deep-sea demosponges. PLoS One 2021; 16:e0241095. [PMID: 33503057 PMCID: PMC7840048 DOI: 10.1371/journal.pone.0241095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022] Open
Abstract
Sponges produce distinct fatty acids (FAs) that (potentially) can be used as chemotaxonomic and ecological biomarkers to study endosymbiont-host interactions and the functional ecology of sponges. Here, we present FA profiles of five common habitat-building deep-sea sponges (class Demospongiae, order Tetractinellida), which are classified as high microbial abundance (HMA) species. Geodia hentscheli, G. parva, G. atlantica, G. barretti, and Stelletta rhaphidiophora were collected from boreal and Arctic sponge grounds in the North-Atlantic Ocean. Bacterial FAs dominated in all five species and particularly isomeric mixtures of mid-chain branched FAs (MBFAs, 8- and 9-Me-C16:0 and 10- and 11-Me-C18:0) were found in high abundance (together ≥ 20% of total FAs) aside more common bacterial markers. In addition, the sponges produced long-chain linear, mid- and a(i)-branched unsaturated FAs (LCFAs) with a chain length of 24‒28 C atoms and had predominantly the typical Δ5,9 unsaturation, although the Δ9,19 and (yet undescribed) Δ11,21 unsaturations were also identified. G. parva and S. rhaphidiophora each produced distinct LCFAs, while G. atlantica, G. barretti, and G. hentscheli produced similar LCFAs, but in different ratios. The different bacterial precursors varied in carbon isotopic composition (δ13C), with MBFAs being more enriched compared to other bacterial (linear and a(i)-branched) FAs. We propose biosynthetic pathways for different LCFAs from their bacterial precursors, that are consistent with small isotopic differences found in LCFAs. Indeed, FA profiles of deep-sea sponges can serve as chemotaxonomic markers and support the concept that sponges acquire building blocks from their endosymbiotic bacteria.
Collapse
Affiliation(s)
- Anna de Kluijver
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
- * E-mail: , (ADK); (KGJN)
| | - Klaas G. J. Nierop
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
- * E-mail: , (ADK); (KGJN)
| | | | - Martijn C. Bart
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Beate M. Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ulrike Hanz
- NIOZ-Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, Texel, Netherlands
| | - Jasper M. de Goeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Furu Mienis
- NIOZ-Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, Texel, Netherlands
| | - Jack J. Middelburg
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Akinwole P, Kaplan L, Findlay R. Elucidating stream bacteria utilizing terrestrial dissolved organic matter. World J Microbiol Biotechnol 2021; 37:32. [DOI: 10.1007/s11274-021-02997-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022]
|
5
|
Vijayan A, Vattiringal Jayadradhan RK, Pillai D, Prasannan Geetha P, Joseph V, Isaac Sarojini BS. Nitrospira as versatile nitrifiers: Taxonomy, ecophysiology, genome characteristics, growth, and metabolic diversity. J Basic Microbiol 2021; 61:88-109. [PMID: 33448079 DOI: 10.1002/jobm.202000485] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
The global nitrogen cycle is of paramount significance as it affects important processes like primary productivity and decomposition. Nitrification, the oxidation of ammonia to nitrate via nitrite, is a key process in the nitrogen cycle. The knowledge about nitrification has been challenged during the last few decades with inventions like anaerobic ammonia oxidation, ammonia-oxidizing archaea, and recently the complete ammonia oxidation (comammox). The discovery of comammox Nitrospira has made a paradigm shift in nitrification, before which it was considered as a two-step process, mediated by chemolithoautotrophic ammonia oxidizers and nitrite oxidizers. The genome of comammox Nitrospira equipped with molecular machineries for both ammonia and nitrite oxidation. The genus Nitrospira is ubiquitous, comes under phylum Nitrospirae, which comprises six sublineages consisting of canonical nitrite oxidizers and comammox. The single-step nitrification is energetically more feasible; furthermore, the existence of diverse metabolic pathways in Nitrospira is critical for its establishment in various habitats. The present review discusses the taxonomy, ecophysiology, isolation, identification, growth, and metabolic diversity of the genus Nitrospira; compares the genomes of canonical nitrite-oxidizing Nitrospira and comammox Nitrospira, and analyses the differences of Nitrospira with other nitrifying bacteria.
Collapse
Affiliation(s)
- Ardhra Vijayan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Rejish Kumar Vattiringal Jayadradhan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.,Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Preena Prasannan Geetha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Bright Singh Isaac Sarojini
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|
6
|
Mehrani MJ, Sobotka D, Kowal P, Ciesielski S, Makinia J. The occurrence and role of Nitrospira in nitrogen removal systems. BIORESOURCE TECHNOLOGY 2020; 303:122936. [PMID: 32059161 DOI: 10.1016/j.biortech.2020.122936] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 05/04/2023]
Abstract
Application of the modern microbial techniques changed the paradigm about the microorganisms performing nitrification. Numerous investigations recognized representatives of the genus Nitrospira as a key and predominant nitrite-oxidizing bacteria in biological nutrient removal systems, especially under low dissolved oxygen and substrate conditions. The recent discovery of Nitrospira capable of performing complete ammonia oxidation (comammox) raised a fundamental question about the actual role of Nitrospira in both nitrification steps. This review summarizes the current knowledge about morphological, physiological and genetic characteristics of the canonical and comammox Nitrospira. Potential implications of comammox for the functional aspects of nitrogen removal have been highlighted. The complex meta-analysis of literature data was applied to identify specific individual variables and their combined interactions on the Nitrospira abundance. In addition to dissolved oxygen and influent nitrogen concentrations, temperature and pH may play an important role in enhancing or suppressing the Nitrospira activity.
Collapse
Affiliation(s)
- Mohamad-Javad Mehrani
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Przemyslaw Kowal
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Sloneczna 45G, 10-709 Olsztyn, Poland
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
7
|
Spieck E, Spohn M, Wendt K, Bock E, Shively J, Frank J, Indenbirken D, Alawi M, Lücker S, Hüpeden J. Extremophilic nitrite-oxidizing Chloroflexi from Yellowstone hot springs. THE ISME JOURNAL 2020; 14:364-379. [PMID: 31624340 PMCID: PMC6976673 DOI: 10.1038/s41396-019-0530-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/03/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022]
Abstract
Nitrifying microorganisms occur across a wide temperature range from 4 to 84 °C and previous studies in geothermal systems revealed their activity under extreme conditions. Archaea were detected to be responsible for the first step of nitrification, but it is still a challenging issue to clarify the identity of heat-tolerant nitrite oxidizers. In a long-term cultivation approach, we inoculated mineral media containing ammonium and nitrite as substrates with biofilms and sediments of two hot springs in Yellowstone National Park (USA). The nitrifying consortia obtained at 70 °C consisted mostly of novel Chloroflexi as revealed by metagenomic sequencing. Among these, two deep-branching novel Chloroflexi were identified as putative nitrite-oxidizing bacteria (NOB) by the presence of nitrite oxidoreductase encoding genes in their genomes. Stoichiometric oxidation of nitrite to nitrate occurred under lithoautotrophic conditions, but was stimulated by organic matter. Both NOB candidates survived long periods of starvation and the more abundant one formed miniaturized cells and was heat resistant. This detection of novel thermophilic NOB exemplifies our still incomplete knowledge of nitrification, and indicates that nitrite oxidation might be an ancient and wide-spread form of energy conservation.
Collapse
Affiliation(s)
- Eva Spieck
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany.
| | - Michael Spohn
- Technology Platform Next Generation Sequencing, Heinrich Pette Institut, Hamburg, Germany
| | - Katja Wendt
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Eberhard Bock
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Jessup Shively
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Jeroen Frank
- Department of Microbiology, IWWR, Radboud University, Nijmegen, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Heinrich Pette Institut, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Lücker
- Department of Microbiology, IWWR, Radboud University, Nijmegen, The Netherlands
| | - Jennifer Hüpeden
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Aepfler RF, Bühring SI, Elvert M. Substrate characteristic bacterial fatty acid production based on amino acid assimilation and transformation in marine sediments. FEMS Microbiol Ecol 2019; 95:5555570. [PMID: 31504469 DOI: 10.1093/femsec/fiz131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/23/2019] [Indexed: 01/25/2023] Open
Abstract
Polar lipid-derived fatty acids (PLFAs) and their stable carbon isotopes are frequently combined to characterize microbial populations involved in the degradation of organic matter, offering a link to biogeochemical processes and carbon sources used. However, PLFA patterns derive from multiple species and may be influenced by substrate types. Here, we investigated such dependencies by monitoring the transformation of position-specifically 13C-labeled amino acids (AAs) in coastal marine sediments dominated by heterotrophic bacteria. Alanine was assimilated into straight-chain FAs, while valine and leucine incorporation led to the characteristic production of even- and odd-numbered iso-series FAs. This suggests that identical microbial communities adjust lipid biosynthesis according to substrate availability. Transformation into precursor molecules for FA biosynthesis was manifested in increased 13C recoveries of the corresponding volatiles acetate, isobutyrate and isovalerate of up to 39.1%, much higher than for PLFAs (<0.9%). A significant fraction of 13C was found in dissolved inorganic carbon (up to 37.9%), while less was recovered in total organic carbon (up to 17.3%). We observed a clear discrimination against the carboxyl C, whereby C2 and C3 positions were preferentially incorporated into PLFAs. Therefore, position-specific labeling is an appropriate tool for reconstructing the metabolic fate of protein-derived AAs in marine environments.
Collapse
Affiliation(s)
- Rebecca F Aepfler
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany.,Hydrothermal Geomicrobiology Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 13, 28359 Bremen, Germany
| | - Solveig I Bühring
- Hydrothermal Geomicrobiology Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 13, 28359 Bremen, Germany
| | - Marcus Elvert
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany
| |
Collapse
|
9
|
Schwab VF, Nowak ME, Elder CD, Trumbore SE, Xu X, Gleixner G, Lehmann R, Pohnert G, Muhr J, Küsel K, Totsche KU. 14C-Free Carbon Is a Major Contributor to Cellular Biomass in Geochemically Distinct Groundwater of Shallow Sedimentary Bedrock Aquifers. WATER RESOURCES RESEARCH 2019; 55:2104-2121. [PMID: 31068736 PMCID: PMC6487957 DOI: 10.1029/2017wr022067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 09/17/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Despite the global significance of the subsurface biosphere, the degree to which it depends on surface organic carbon (OC) is still poorly understood. Here, we compare stable and radiogenic carbon isotope compositions of microbial phospholipid fatty acids (PLFAs) with those of in situ potential microbial C sources to assess the major C sources for subsurface microorganisms in biogeochemical distinct shallow aquifers (Critical Zone Exploratory, Thuringia Germany). Despite the presence of younger OC, the microbes assimilated 14C-free OC to varying degrees; ~31% in groundwater within the oxic zone, ~47% in an iron reduction zone, and ~70% in a sulfate reduction/anammox zone. The persistence of trace amounts of mature and partially biodegraded hydrocarbons suggested that autochthonous petroleum-derived hydrocarbons were a potential 14C-free C source for heterotrophs in the oxic zone. In this zone, Δ14C values of dissolved inorganic carbon (-366 ± 18‰) and 11MeC16:0 (-283 ± 32‰), an important component in autotrophic nitrite oxidizers, were similar enough to indicate that autotrophy is an important additional C fixation pathway. In anoxic zones, methane as an important C source was unlikely since the 13C-fractionations between the PLFAs and CH4 were inconsistent with kinetic isotope effects associated with methanotrophy. In the sulfate reduction/anammox zone, the strong 14C-depletion of 10MeC16:0 (-942 ± 22‰), a PLFA common in sulfate reducers, indicated that those bacteria were likely to play a critical part in 14C-free sedimentary OC cycling. Results indicated that the 14C-content of microbial biomass in shallow sedimentary aquifers results from complex interactions between abundance and bioavailability of naturally occurring OC, hydrogeology, and specific microbial metabolisms.
Collapse
Affiliation(s)
- Valérie F. Schwab
- Institute of GeosciencesFriedrich Schiller UniversityJenaGermany
- Max‐Planck‐Institute for BiogeochemistryJenaGermany
- Institute for Inorganic and Analytical ChemistryFriedrich Schiller UniversityJenaGermany
| | | | - Clayton D. Elder
- Department of Earth System ScienceUniversity of CaliforniaIrvineCAUSA
| | - Susan E. Trumbore
- Max‐Planck‐Institute for BiogeochemistryJenaGermany
- Department of Earth System ScienceUniversity of CaliforniaIrvineCAUSA
| | - Xiaomei Xu
- Department of Earth System ScienceUniversity of CaliforniaIrvineCAUSA
| | | | - Robert Lehmann
- Institute of GeosciencesFriedrich Schiller UniversityJenaGermany
| | - Georg Pohnert
- Institute for Inorganic and Analytical ChemistryFriedrich Schiller UniversityJenaGermany
| | - Jan Muhr
- Max‐Planck‐Institute for BiogeochemistryJenaGermany
| | - Kirsten Küsel
- Institute of EcologyFriedrich Schiller UniversityJenaGermany
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigGermany
| | - Kai U. Totsche
- Institute of GeosciencesFriedrich Schiller UniversityJenaGermany
| |
Collapse
|
10
|
Soil Microbial Community Structure and Physicochemical Properties in Amomum tsaoko-based Agroforestry Systems in the Gaoligong Mountains, Southwest China. SUSTAINABILITY 2019. [DOI: 10.3390/su11020546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Amomum tsaoko is cultivated in forests of tropical and subtropical regions of China, and the planting area is expanding gradually. However, little attention has been paid to the impact of A. tsaoko cultivation on the soil characteristics of the regions. We analyzed the effects of the A. tsaoko-forest agroforestry system (AFs) on the composition of soil microbial communities with increasing stand ages. We also compared the soil physicochemical properties, microbial biomass, and phospholipid fatty acid (PLFA) composition between native forest (NF) and AFs. The results showed that the level of total carbon, nitrogen, and organic matter dramatically dropped in AFs with increasing stand ages. pH affected other soil properties and showed close correlation to total carbon (P = 0.0057), total nitrogen (P = 0.0146), organic matter (P = 0.0075), hydrolyzable nitrogen (P = 0.0085), available phosphorus (P < 0.0001), and available potassium (P = 0.0031). PLFAs of bacteria (F = 4.650, P = 0.037), gram-positive bacteria (F = 6.640, P = 0.015), anaerobe (F = 5.672, P = 0.022), and total PLFA (F = 4.349, P = 0.043) were significantly affected by different treatments, with the greatest value for NF treatment, and least value for AF5. However, the microbial biomass declined during the initial 5 years of cultivation, but it reached the previous level after more than 10 years of cultivation. Our research suggests that AFs is a profitable land-use practice in the Gaoligong Mountains and that AFs showed a recovering trend of the soil nutrient condition with increasing stand ages. However, the severe loss of nitrogen in the soil of AFs requires additional nitrogen during cultivation to restore it to pre-cultivation levels.
Collapse
|
11
|
Use of multivariate factor analysis to characterize the fatty acid profile of buffalo milk. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Rush D, Sinninghe Damsté JS. Lipids as paleomarkers to constrain the marine nitrogen cycle. Environ Microbiol 2017; 19:2119-2132. [PMID: 28142226 PMCID: PMC5516240 DOI: 10.1111/1462-2920.13682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 11/30/2022]
Abstract
Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction‐oxidation transformations of bio‐available nitrogen. Within marine systems, nitrogen availability is often the limiting factor in the growth of autotrophic organisms, intrinsically linking the nitrogen and carbon cycles. In order to elucidate the state of these cycles in the past, and help envisage present and future variability, it is essential to understand the specific microbial processes responsible for transforming bio‐available nitrogen species. As most microorganisms are soft‐bodied and seldom leave behind physical fossils in the sedimentary record, recalcitrant lipid biomarkers are used to unravel microbial processes in the geological past. This review emphasises the recent advances in marine nitrogen cycle lipid biomarkers, underlines the missing links still needed to fully elucidate past shifts in this biogeochemically‐important cycle, and provides examples of biomarker applications in the geological past.
Collapse
Affiliation(s)
- Darci Rush
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, P.O. Box 59 1790 AB, The Netherlands.,School of Civil Engineering and Geosciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, United Kingdom
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, P.O. Box 59 1790 AB, The Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, TA Utrecht, P.O. Box 80.121, 3508, The Netherlands
| |
Collapse
|
13
|
A robust nitrifying community in a bioreactor at 50 °C opens up the path for thermophilic nitrogen removal. ISME JOURNAL 2016; 10:2293-303. [PMID: 26894446 DOI: 10.1038/ismej.2016.8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 11/08/2022]
Abstract
The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to 'Candidatus Nitrososphaera gargensis', and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida. Incorporation of (13)C-derived bicarbonate into the respective characteristic membrane lipids during nitrification supported their activity as autotrophs. Specific activities up to 198±10 and 894±81 mg N g(-1) VSS per day for AOAs and NOBs were measured, where NOBs were 33% more sensitive to free ammonia. The NOBs were extremely sensitive to free nitrous acid, whereas the AOAs could only be inhibited by high nitrite concentrations, independent of the free nitrous acid concentration. The observed difference in product/substrate inhibition could facilitate the development of NOB inhibition strategies to achieve more cost-effective processes such as deammonification. This study describes the enrichment of autotrophic thermophilic nitrifiers from a nutrient-rich environment and the successful operation of a thermophilic nitrifying bioreactor for the first time, facilitating opportunities for thermophilic nitrogen removal biotechnology.
Collapse
|
14
|
Fischer AM, Ryan JP, Levesque C, Welschmeyer N. Characterizing estuarine plume discharge into the coastal ocean using fatty acid biomarkers and pigment analysis. MARINE ENVIRONMENTAL RESEARCH 2014; 99:106-116. [PMID: 24838080 DOI: 10.1016/j.marenvres.2014.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 04/04/2014] [Accepted: 04/13/2014] [Indexed: 06/03/2023]
Abstract
The transformation of estuaries by human activities continues to alter the biogeochemical balance of the coastal ocean. The disruption of this balance can negatively impact the provision of goods and services, including fisheries, commerce and transportation, recreation and esthetic enjoyment. Here we examine a link, between the Elkhorn Slough and the coastal ocean in Monterey Bay, California (USA) using a novel application of fatty acid and pigment analysis. Fatty acid analysis of filtered water samples showed biologically distinct water types between the Elkhorn Slough plume and the receiving waters of the coastal ocean. A remarkable feature of the biological content of the plume entering the coastal ocean was the abundance of bacteria-specific fatty acids, which correlated well with concentrations of colored dissolved organic matter (CDOM). Pigment analysis showed that plume waters contained higher concentrations of diatoms and cryptophytes, while the coastal ocean waters showed higher relative concentrations of dinoflagellates. Bacteria and cryptophytes can provide a source of labile, energy-rich organic matter that may be locally important as a source of food for pelagic and benthic communities. Surface and depth surveys of the plume show that the biogeochemical constituents of the slough waters are injected into the coastal waters and become entrained in the northward flowing, nearshore current of Monterey Bay. Transport of these materials to the northern portion of the bay can fuel a bloom incubator, which exists in this region. This study shows that fatty acid markers can reveal the biogeochemical interactions between estuaries and the coastal ocean and highlights how man-made changes have the potential to influence coastal ecological change.
Collapse
Affiliation(s)
- Andrew M Fischer
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA; National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Australian Maritime College, Launceston, TAS 7250, Australia.
| | - John P Ryan
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA.
| | - Christian Levesque
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA; John Abbot College, 21 275 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec H9X 3L9, Canada.
| | - Nicholas Welschmeyer
- Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA.
| |
Collapse
|
15
|
Boschker HTS, Vasquez-Cardenas D, Bolhuis H, Moerdijk-Poortvliet TWC, Moodley L. Chemoautotrophic carbon fixation rates and active bacterial communities in intertidal marine sediments. PLoS One 2014; 9:e101443. [PMID: 25003508 PMCID: PMC4086895 DOI: 10.1371/journal.pone.0101443] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/06/2014] [Indexed: 11/18/2022] Open
Abstract
Chemoautotrophy has been little studied in typical coastal marine sediments, but may be an important component of carbon recycling as intense anaerobic mineralization processes in these sediments lead to accumulation of high amounts of reduced compounds, such as sulfides and ammonium. We studied chemoautotrophy by measuring dark-fixation of 13C-bicarbonate into phospholipid derived fatty acid (PLFA) biomarkers at two coastal sediment sites with contrasting sulfur chemistry in the Eastern Scheldt estuary, the Netherlands. At one site where free sulfide accumulated in the pore water right to the top of the sediment, PLFA labeling was restricted to compounds typically found in sulfur and ammonium oxidizing bacteria. At the other site, with no detectable free sulfide in the pore water, a very different PLFA labeling pattern was found with high amounts of label in branched i- and a-PLFA besides the typical compounds for sulfur and ammonium oxidizing bacteria. This suggests that other types of chemoautotrophic bacteria were also active, most likely Deltaproteobacteria related to sulfate reducers. Maximum rates of chemoautotrophy were detected in first 1 to 2 centimeters of both sediments and chemosynthetic biomass production was high ranging from 3 to 36 mmol C m−2 d−1. Average dark carbon fixation to sediment oxygen uptake ratios were 0.22±0.07 mol C (mol O2)−1, which is in the range of the maximum growth yields reported for sulfur oxidizing bacteria indicating highly efficient growth. Chemoautotrophic biomass production was similar to carbon mineralization rates in the top of the free sulfide site, suggesting that chemoautotrophic bacteria could play a crucial role in the microbial food web and labeling in eukaryotic poly-unsaturated PLFA was indeed detectable. Our study shows that dark carbon fixation by chemoautotrophic bacteria is a major process in the carbon cycle of coastal sediments, and should therefore receive more attention in future studies on sediment biogeochemistry and microbial ecology.
Collapse
Affiliation(s)
- Henricus T. S. Boschker
- Department of Marine Microbiology, Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, The Netherlands
- * E-mail:
| | - Diana Vasquez-Cardenas
- Department of Marine Microbiology, Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, The Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology, Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, The Netherlands
| | | | - Leon Moodley
- Marine Environment Group, International Research Institute of Stavanger (IRIS), Randaberg, Norway
| |
Collapse
|
16
|
Characterization of a new marine nitrite oxidizing bacterium, Nitrospina watsonii sp. nov., a member of the newly proposed phylum "Nitrospinae". Syst Appl Microbiol 2014; 37:170-6. [PMID: 24581679 DOI: 10.1016/j.syapm.2013.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/06/2013] [Accepted: 12/23/2013] [Indexed: 11/22/2022]
Abstract
Nitrite oxidizing bacteria are an integral part of the nitrogen cycle in marine waters, but the knowledge about their diversity is limited. Recently, a high abundance of Nitrospina-like 16S rRNA gene sequences has been detected in oceanic habitats with low oxygen content by molecular methods. Here, we describe a new strain of Nitrospina, which was sampled in 100m depth from the Black Sea. It coexisted with a not-yet cultivated chemoorganotrophic gammaproteobacterium and could be purified by classical isolation methods including Percoll density gradient centrifugation. The new Nitrospina-like bacterium grew lithoautotrophically at 28°C in diluted seawater supplemented with inorganic salts and nitrite. Gram-negative rods were characterized morphologically, physiologically and partly biochemically. The 16S rRNA gene of the new strain of Nitrospina is 97.9% similar to the described species N. gracilis and DNA/DNA hybridization experiments revealed a relatedness of 30.0%. The data from both Nitrospina species and environmental clones were used for an extensive 16S rRNA based phylogenetic study applying high quality filtering. Treeing analyses confirm the newly defined phylum status for "Nitrospinae" [18]. The results of phylogenetic and genotypic analyses support the proposal of a novel species Nitrospina watsonii sp. nov. (type strain 347(T), LMG 27401(T), NCIMB 14887(T)).
Collapse
|
17
|
Kruse M, Zumbrägel S, Bakker E, Spieck E, Eggers T, Lipski A. The nitrite-oxidizing community in activated sludge from a municipal wastewater treatment plant determined by fatty acid methyl ester-stable isotope probing. Syst Appl Microbiol 2013; 36:517-24. [PMID: 23921154 DOI: 10.1016/j.syapm.2013.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
Metabolically-active autotrophic nitrite oxidizers from activated sludge were labeled with (13)C-bicarbonate under exposure to different temperatures and nitrite concentrations. The labeled samples were characterized by FAME-SIP (fatty acid methyl ester-stable isotope probing). The compound cis-11-palmitoleic acid, which is the major lipid of the most abundant nitrite oxidizer in activated sludge, Candidatus Nitrospira defluvii, showed (13)C-incorporation in all samples exposed to 3 mM nitrite. Subsequently, the lipid cis-7-palmitoleic acid was labeled, and it indicated the activity of a nitrite oxidizer that was different from the known Nitrospira taxa in activated sludge. The highest incorporation of cis-7-palmitoleic acid label was found after incubation with a nitrite concentration of 0.3 mM at 17 and 22°C. While activity of Nitrobacter populations could not be detected by the FAME-SIP approach, an unknown nitrite oxidizer with the major lipid cis-9 isomer of palmitoleic acid exhibited (13)C-incorporation at 28°C with 30 mM nitrite. These results indicated flexibility of nitrite-oxidizing guilds in a complex community responding to different conditions. Labeled lipids so far not described for activated sludge-associated nitrifiers indicated the presence of unknown nitrite oxidizers in this habitat. The FAME-SIP-based information can be used to define appropriate conditions for the enrichment of nitrite-oxidizing guilds from complex samples.
Collapse
Affiliation(s)
- Myriam Kruse
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Ernährungs- und Lebensmittelwissenschaften, Abteilung Lebensmittelmikrobiologie und -hygiene, Meckenheimer Allee 168, 53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Kruse M, Keuter S, Bakker E, Spieck E, Eggers T, Lipski A. Relevance and diversity of Nitrospira populations in biofilters of brackish RAS. PLoS One 2013; 8:e64737. [PMID: 23705006 PMCID: PMC3660363 DOI: 10.1371/journal.pone.0064737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/18/2013] [Indexed: 11/19/2022] Open
Abstract
Lithoautotrophic nitrite-oxidizing bacterial populations from moving-bed biofilters of brackish recirculation aquaculture systems (RAS; shrimp and barramundi) were tested for their metabolic activity and phylogenetic diversity. Samples from the biofilters were labeled with (13)C-bicarbonate and supplemented with nitrite at concentrations of 0.3, 3 and 10 mM, and incubated at 17 and 28°C, respectively. The biofilm material was analyzed by fatty acid methyl ester - stable isotope probing (FAME-SIP). High portions of up to 45% of Nitrospira-related labeled lipid markers were found confirming that Nitrospira is the major autotrophic nitrite oxidizer in these brackish systems with high nitrogen loads. Other nitrite-oxidizing bacteria such as Nitrobacter or Nitrotoga were functionally not relevant in the investigated biofilters. Nitrospira-related 16S rRNA gene sequences were obtained from the samples with 10 mM nitrite and analyzed by a cloning approach. Sequence studies revealed four different phylogenetic clusters within the marine sublineage IV of Nitrospira, though most sequences clustered with the type strain of Nitrospira marina and with a strain isolated from a marine RAS. Three lipids dominated the whole fatty acid profiles of nitrite-oxidizing marine and brackish enrichments of Nitrospira sublineage IV organisms. The membranes included two marker lipids (16∶1 cis7 and 16∶1 cis11) combined with the non-specific acid 16∶0 as major compounds and confirmed these marker lipids as characteristic for sublineage IV species. The predominant labeling of these characteristic fatty acids and the phylogenetic sequence analyses of the marine Nitrospira sublineage IV identified organisms of this sublineage as main autotrophic nitrite-oxidizers in the investigated brackish biofilter systems.
Collapse
Affiliation(s)
- Myriam Kruse
- Department of Food Microbiology and Hygiene, Institute of Nutrition and Food Science, University of Bonn, Bonn, Germany
| | - Sabine Keuter
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Evert Bakker
- Department of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Eva Spieck
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Till Eggers
- Department of Ecology, University of Osnabrück, Osnabrück, Germany
| | - André Lipski
- Department of Food Microbiology and Hygiene, Institute of Nutrition and Food Science, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
19
|
Keuter S, Kruse M, Lipski A, Spieck E. Relevance of Nitrospira for nitrite oxidation in a marine recirculation aquaculture system and physiological features of a Nitrospira marina-like isolate. Environ Microbiol 2011; 13:2536-47. [DOI: 10.1111/j.1462-2920.2011.02525.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Spieck E, Lipski A. Cultivation, growth physiology, and chemotaxonomy of nitrite-oxidizing bacteria. Methods Enzymol 2011; 486:109-30. [PMID: 21185433 DOI: 10.1016/b978-0-12-381294-0.00005-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lithoautotrophic nitrite-oxidizing bacteria (NOB) are known as fastidious microorganisms, which are hard to maintain and not many groups are trained to keep them in culture. They convert nitrite stoichiometrically to nitrate and growth is slow due to the poor energy balance. NOB are comprised of five genera, which are scattered among the phylogenetic tree. Because NOB proliferate in a broad range of environmental conditions (terrestrial, marine, acidic) and have diverse lifestyles (lithoautotrophic, mixotrophic, and heterotrophic), variation in media composition is necessary to match their individual growth requirements in the laboratory. From Nitrobacter and Nitrococcus relatively high cell amounts can be achieved by consumption of high nitrite concentrations, whereas accumulation of cells belonging to Nitrospira, Nitrospina, or the new candidate genus Nitrotoga needs prolonged feeding procedures. Isolation is possible for planktonic cells by dilution series or plating techniques, but gets complicated for strains with a tendency to develop microcolonies like Nitrospira. Physiological experiments including determination of the temperature or pH-optimum can be conducted with active laboratory cultures of NOB, but the attainment of reference values like cell protein content or cell numbers might be hard to realize due to the formation of flocs and the low cell density. Monitoring of laboratory enrichments is necessary especially if several species or genera coexist within the same culture and due to population shifts over time. Chemotaxonomy is a valuable method to identify and quantify NOB in biofilms and pure cultures alike, since fatty acid profiles reflect their phylogenetic heterogeneity. This chapter focusses on methods to enrich, isolate, and characterize NOB by various cultivation-based techniques.
Collapse
Affiliation(s)
- Eva Spieck
- Biocenter Klein Flottbek, University of Hamburg, Department of Microbiology and Biotechnology, Hamburg, Germany
| | | |
Collapse
|
21
|
Lebedeva EV, Off S, Zumbrägel S, Kruse M, Shagzhina A, Lücker S, Maixner F, Lipski A, Daims H, Spieck E. Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring. FEMS Microbiol Ecol 2010; 75:195-204. [PMID: 21138449 DOI: 10.1111/j.1574-6941.2010.01006.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Geothermal environments are a suitable habitat for nitrifying microorganisms. Conventional and molecular techniques indicated that chemolithoautotrophic nitrite-oxidizing bacteria affiliated with the genus Nitrospira are widespread in environments with elevated temperatures up to 55 °C in Asia, Europe, and Australia. However, until now, no thermophilic pure cultures of Nitrospira were available, and the physiology of these bacteria was mostly uncharacterized. Here, we report on the isolation and characterization of a novel thermophilic Nitrospira strain from a microbial mat of the terrestrial geothermal spring Gorjachinsk (pH 8.6; temperature 48 °C) from the Baikal rift zone (Russia). Based on phenotypic properties, chemotaxonomic data, and 16S rRNA gene phylogeny, the isolate was assigned to the genus Nitrospira as a representative of a novel species, for which the name Nitrospira calida is proposed. A highly similar 16S rRNA gene sequence (99.6% similarity) was detected in a Garga spring enrichment grown at 46 °C, whereas three further thermophilic Nitrospira enrichments from the Garga spring and from a Kamchatka Peninsula (Russia) terrestrial hot spring could be clearly distinguished from N. calida (93.6-96.1% 16S rRNA gene sequence similarity). The findings confirmed that Nitrospira drive nitrite oxidation in moderate thermophilic habitats and also indicated an unexpected diversity of heat-adapted Nitrospira in geothermal hot springs.
Collapse
Affiliation(s)
- Elena V Lebedeva
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hochmuth T, Piel J. Polyketide synthases of bacterial symbionts in sponges--evolution-based applications in natural products research. PHYTOCHEMISTRY 2009; 70:1841-1849. [PMID: 19443000 DOI: 10.1016/j.phytochem.2009.04.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/09/2009] [Accepted: 04/15/2009] [Indexed: 05/27/2023]
Abstract
Marine sponges are an unusually rich source of bioactive natural products with clinical potential. They also often harbor rich communities of symbiotic bacteria that have often been suspected as the true producers of sponge-derived compounds. To date, these bacteria can in most cases not be cultivated, but culture-independent methods, such as isolating and analyzing biosynthetic gene clusters using metagenomic strategies, have recently provided first insights into their chemical potential. This review summarizes recent work of our laboratory on the study of polyketide synthases (PKSs). These studies revealed two evolutionarily distinct, unusual PKS types that are commonly found in sponge metagenomes and were shown to be of bacterial origin. One, the sup PKS, dominates sponge metagenomic DNA libraries, occurs widespread in bacteriosponges and is to date exclusively known from such animals. Data suggest that it is a type of synthase that generates methyl-branched fatty acids, which are commonly present in sponges. The other PKS type, termed trans-acyltransferase (AT) PKS, is responsible for the biosynthesis of complex, bioactive polyketides, such as the onnamides, and also occurs in free-living bacteria. The diversity of PKS genes present in a single sponge metagenome can be enormous. However, the phylogenetic approaches outlined in this review can provide valuable insights into the PKS function and structures of polyketides and can assist in the targeted isolation of gene clusters.
Collapse
Affiliation(s)
- Thomas Hochmuth
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | | |
Collapse
|
23
|
Alawi M, Lipski A, Sanders T, Eva-Maria-Pfeiffer, Spieck E. Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic. ISME JOURNAL 2007; 1:256-64. [DOI: 10.1038/ismej.2007.34] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Spieck E, Hartwig C, McCormack I, Maixner F, Wagner M, Lipski A, Daims H. Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge. Environ Microbiol 2006; 8:405-15. [PMID: 16478447 DOI: 10.1111/j.1462-2920.2005.00905.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously uncultured nitrite-oxidizing bacteria affiliated to the genus Nitrospira have for the first time been successfully enriched from activated sludge from a municipal wastewater treatment plant. During the enrichment procedure, the abundance of the Nitrospira-like bacteria increased to approximately 86% of the total bacterial population. This high degree of purification was achieved by a novel enrichment protocol, which exploits physiological features of Nitrospira-like bacteria and includes the selective repression of coexisting Nitrobacter cells and heterotrophic contaminants by application of ampicillin in a final concentration of 50 microg ml(-1). The enrichment process was monitored by electron microscopy, fluorescence in situ hybridization (FISH) with rRNA-targeted probes and fatty acid profiling. Phylogenetic analysis of 16S rRNA gene sequences revealed that the enriched bacteria represent a novel Nitrospira species closely related to uncultured Nitrospira-like bacteria previously found in wastewater treatment plants and nitrifying bioreactors. The enriched strain is provisionally classified as 'Candidatus Nitrospira defluvii'.
Collapse
MESH Headings
- Ampicillin/pharmacology
- Anti-Bacterial Agents/pharmacology
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacterial Physiological Phenomena
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fatty Acids/analysis
- Fatty Acids/chemistry
- Genes, rRNA
- In Situ Hybridization, Fluorescence
- Microscopy, Electron
- Nitrobacter/drug effects
- RNA, Bacterial/analysis
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sewage/microbiology
- Water Microbiology
Collapse
Affiliation(s)
- Eva Spieck
- Universität Hamburg, Biozentrum Klein Flottbek, Mikrobiologie, Ohnhorststr. 18, D-22609 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Starkenburg SR, Chain PSG, Sayavedra-Soto LA, Hauser L, Land ML, Larimer FW, Malfatti SA, Klotz MG, Bottomley PJ, Arp DJ, Hickey WJ. Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255. Appl Environ Microbiol 2006; 72:2050-63. [PMID: 16517654 PMCID: PMC1393235 DOI: 10.1128/aem.72.3.2050-2063.2006] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The alphaproteobacterium Nitrobacter winogradskyi (ATCC 25391) is a gram-negative facultative chemolithoautotroph capable of extracting energy from the oxidation of nitrite to nitrate. Sequencing and analysis of its genome revealed a single circular chromosome of 3,402,093 bp encoding 3,143 predicted proteins. There were extensive similarities to genes in two alphaproteobacteria, Bradyrhizobium japonicum USDA110 (1,300 genes) and Rhodopseudomonas palustris CGA009 CG (815 genes). Genes encoding pathways for known modes of chemolithotrophic and chemoorganotrophic growth were identified. Genes encoding multiple enzymes involved in anapleurotic reactions centered on C2 to C4 metabolism, including a glyoxylate bypass, were annotated. The inability of N. winogradskyi to grow on C6 molecules is consistent with the genome sequence, which lacks genes for complete Embden-Meyerhof and Entner-Doudoroff pathways, and active uptake of sugars. Two gene copies of the nitrite oxidoreductase, type I ribulose-1,5-bisphosphate carboxylase/oxygenase, cytochrome c oxidase, and gene homologs encoding an aerobic-type carbon monoxide dehydrogenase were present. Similarity of nitrite oxidoreductases to respiratory nitrate reductases was confirmed. Approximately 10% of the N. winogradskyi genome codes for genes involved in transport and secretion, including the presence of transporters for various organic-nitrogen molecules. The N. winogradskyi genome provides new insight into the phylogenetic identity and physiological capabilities of nitrite-oxidizing bacteria. The genome will serve as a model to study the cellular and molecular processes that control nitrite oxidation and its interaction with other nitrogen-cycling processes.
Collapse
|
26
|
Lebedeva EV, Alawi M, Fiencke C, Namsaraev B, Bock E, Spieck E. Moderately thermophilic nitrifying bacteria from a hot spring of the Baikal rift zone. FEMS Microbiol Ecol 2005; 54:297-306. [PMID: 16332328 DOI: 10.1016/j.femsec.2005.04.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 02/15/2005] [Accepted: 04/14/2005] [Indexed: 11/30/2022] Open
Abstract
Samples from three hot springs (Alla, Seya and Garga) located in the northeastern part of Baikal rift zone (Buryat Republic, Russia) were screened for the presence of thermophilic nitrifying bacteria. Enrichment cultures were obtained solely from the Garga spring characterized by slightly alkaline water (pH 7.9) and an outlet temperature of 75 degrees C. The enrichment cultures of the ammonia- and nitrite oxidizers grew at temperature ranges of 27-55 and 40-60 degrees C, respectively. The temperature optimum was approximately 50 degrees C for both groups and thus they can be designated as moderate thermophiles. Ammonia oxidizers were identified with classical and immunological techniques. Representatives of the genus Nitrosomonas and Nitrosospira-like bacteria with characteristic vibroid morphology were detected. The latter were characterized by an enlarged periplasmic space, which has not been previously observed in ammonia oxidizers. Electron microscopy, denaturing gradient gel electrophoresis analyses and partial 16S rRNA gene sequencing provided evidence that the nitrite oxidizers were members of the genus Nitrospira.
Collapse
Affiliation(s)
- Elena V Lebedeva
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/2, Moscow 117312, Russia
| | | | | | | | | | | |
Collapse
|
27
|
Petersen SO, Roslev P, Bol R. Dynamics of a pasture soil microbial community after deposition of cattle urine amended with [13C]urea. Appl Environ Microbiol 2004; 70:6363-9. [PMID: 15528493 PMCID: PMC525158 DOI: 10.1128/aem.70.11.6363-6369.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 06/22/2004] [Indexed: 11/20/2022] Open
Abstract
Within grazed pastures, urine patches are hot spots of nitrogen turnover, since dietary N surpluses are excreted mainly as urea in the urine. This short-term experiment investigated 13C uptake in microbial lipids after simulated deposition of cattle urine at 10.0 and 17.1 g of urea C m(-2). Confined field plots without or with cattle urine amendment were sampled after 4 and 14 days, and soil from 0- to 5-cm and 10- to 20-cm depths was analyzed for content and composition of phospholipid fatty acids (PLFAs) and for the distribution of urea-derived 13C among individual PLFAs. Carbon dioxide emissions were quantified, and the contributions derived from urea were assessed. Initial changes in PLFA composition were greater at the lower level of urea, as revealed by a principal-component analysis. At the higher urea level, osmotic stress was indicated by the dynamics of cyclopropane fatty acids and branched-chain fatty acids. Incorporation of 13C from [13C]urea was low but significant, and the largest amounts of urea-derived C were found in common fatty acids (i.e., 16:0, 16:1omega7c, and 18:1omega7) that would be consistent with growth of typical NH4(+)-oxidizing (Nitrosomonas) and NO2(-)-oxidizing (Nitrobacter) bacteria. Surprisingly, a 20 per thousand depletion of 13C in the cyclopropane fatty acid cy17:0 was observed after 4 days, which was replaced by a 10 to 20 per thousand depletion of that in cy19:0 after 14 days. Possible reasons for this pattern are discussed. Autotrophic nitrifiers could not be implicated in urea hydrolysis to any large extent, but PLFA dynamics and the incorporation of urea-derived 13C in PLFAs indicated a response of nitrifiers which differed between the two urea concentrations.
Collapse
Affiliation(s)
- Søren O Petersen
- Department of Agroecology, Danish Institute of Agricultural Sciences, Tjele, Denmark.
| | | | | |
Collapse
|
28
|
Knief C, Altendorf K, Lipski A. Linking autotrophic activity in environmental samples with specific bacterial taxa by detection of 13C-labelled fatty acids. Environ Microbiol 2003; 5:1155-67. [PMID: 14641595 DOI: 10.1046/j.1462-2920.2003.00510.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A method for the detection of physiologically active autotrophic bacteria in complex microbial communities was developed based on labelling with the stable isotope 13C. Labelling of autotrophic nitrifying, sulphur-oxidizing and iron-oxidizing populations was performed in situ by incubation with NaH[13C]O3. Incorporated label into fatty acid methyl esters (FAMEs) was detected and quantified using gas chromatography-mass spectrometry in single ion monitoring mode. Before the analyses of different environmental samples, the protocol was evaluated in pure culture experiments. In different environmental samples a selective labelling of fatty acids demonstrated which microbial taxa were responsible for the respective chemolithoautotrophic activity. The most strongly labelled fatty acids of a sample from a sulphide treating biofilter from an animal rendering plant were cis-7-hexadecenoic acid (16:1 cis7) and 11-methyl hexadecanoic acid (16:0 11methyl), which are as-yet not known for any sulphide-oxidizing autotroph. The fatty acid labelling pattern of an experimental biotrickling filter sample supplied with dimethyl disulphide clearly indicated the presence and activity of sulphide-oxidizing bacteria of the genus Thiobacillus. For a third environmental sample from an acid mining lake sediment, the assignment of autotrophic activity to bacteria of the genus Leptospirillum but not to Acidithiobacillus could be made by this method, as the fatty acid patterns of these bacteria show clear differences.
Collapse
Affiliation(s)
- Claudia Knief
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | | | | |
Collapse
|