1
|
Benej M, Hoyd R, Kreamer M, Wheeler CE, Grencewicz DJ, Choueiry F, Chan CHF, Zakharia Y, Ma Q, Dodd RD, Ulrich CM, Hardikar S, Churchman ML, Tarhini AA, Robinson LA, Singer EA, Ikeguchi AP, McCarter MD, Tinoco G, Husain M, Jin N, Tan AC, Osman AEG, Eljilany I, Riedlinger G, Schneider BP, Benejova K, Kery M, Papandreou I, Zhu J, Denko N, Spakowicz D. The Tumor Microbiome Reacts to Hypoxia and Can Influence Response to Radiation Treatment in Colorectal Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1690-1701. [PMID: 38904265 PMCID: PMC11234499 DOI: 10.1158/2767-9764.crc-23-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Tumor hypoxia has been shown to predict poor patient outcomes in several cancer types, partially because it reduces radiation's ability to kill cells. We hypothesized that some of the clinical effects of hypoxia could also be due to its impact on the tumor microbiome. Therefore, we examined the RNA sequencing data from the Oncology Research Information Exchange Network database of patients with colorectal cancer treated with radiotherapy. We identified microbial RNAs for each tumor and related them to the hypoxic gene expression scores calculated from host mRNA. Our analysis showed that the hypoxia expression score predicted poor patient outcomes and identified tumors enriched with certain microbes such as Fusobacterium nucleatum. The presence of other microbes, such as Fusobacterium canifelinum, predicted poor patient outcomes, suggesting a potential interaction between hypoxia, the microbiome, and radiation response. To experimentally investigate this concept, we implanted CT26 colorectal cancer cells into immune-competent BALB/c and immune-deficient athymic nude mice. After growth, in which tumors passively acquired microbes from the gastrointestinal tract, we harvested tumors, extracted nucleic acids, and sequenced host and microbial RNAs. We stratified tumors based on their hypoxia score and performed a metatranscriptomic analysis of microbial gene expression. In addition to hypoxia-tropic and -phobic microbial populations, analysis of microbial gene expression at the strain level showed expression differences based on the hypoxia score. Thus, hypoxia gene expression scores seem to associate with different microbial populations and elicit an adaptive transcriptional response in intratumoral microbes, potentially influencing clinical outcomes. SIGNIFICANCE Tumor hypoxia reduces radiotherapy efficacy. In this study, we explored whether some of the clinical effects of hypoxia could be due to interaction with the tumor microbiome. Hypoxic gene expression scores associated with certain microbes and elicited an adaptive transcriptional response in others that could contribute to poor clinical outcomes.
Collapse
Affiliation(s)
- Martin Benej
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Rebecca Hoyd
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - McKenzie Kreamer
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Caroline E Wheeler
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Dennis J Grencewicz
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Fouad Choueiry
- Department of Health Sciences, The Ohio State University, Columbus, Ohio
| | - Carlos H F Chan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Yousef Zakharia
- Division of Oncology, Hematology and Blood & Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Rebecca D Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Cornelia M Ulrich
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Sheetal Hardikar
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | - Ahmad A Tarhini
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Lary A Robinson
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric A Singer
- Department of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Alexandra P Ikeguchi
- Department of Hematology/Oncology, Stephenson Cancer Center of University of Oklahoma, Oklahoma City, Oklahoma
| | - Martin D McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Gabriel Tinoco
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Marium Husain
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ning Jin
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Aik C Tan
- Department of Oncological Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Afaf E G Osman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Islam Eljilany
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Clinical Science Lab, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Gregory Riedlinger
- Department of Precision Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Bryan P Schneider
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Katarina Benejova
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Martin Kery
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jiangjiang Zhu
- Department of Health Sciences, The Ohio State University, Columbus, Ohio
| | - Nicholas Denko
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Daniel Spakowicz
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
2
|
Krieger M, AbdelRahman YM, Choi D, Palmer EA, Yoo A, McGuire S, Kreth J, Merritt J. Stratification of Fusobacterium nucleatum by local health status in the oral cavity defines its subspecies disease association. Cell Host Microbe 2024; 32:479-488.e4. [PMID: 38479393 PMCID: PMC11018276 DOI: 10.1016/j.chom.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 02/16/2024] [Indexed: 03/25/2024]
Abstract
The ubiquitous inflammophilic oral pathobiont Fusobacterium nucleatum (Fn) is widely recognized for its strong association with inflammatory dysbiotic diseases and cancer. Fn is subdivided into four subspecies, which are historically considered functionally interchangeable in the oral cavity. To test this assumption, we analyzed patient-matched dental plaque and odontogenic abscess clinical specimens and examined whether an inflammatory environment selects for/against particular Fn subspecies. Dental plaque harbored a greater diversity of fusobacteria, with Fn. polymorphum dominating, whereas odontogenic abscesses were exceptionally biased for the largely uncharacterized organism Fn. animalis. Comparative genomic analyses revealed significant genotypic distinctions among Fn subspecies that correlate with their preferred ecological niches and support a taxonomic reassignment of each as a distinct Fusobacterium species. Despite originating as a low-abundance organism in dental plaque, Fn. animalis typically outcompetes other oral fusobacteria within the inflammatory abscess environment, which may explain its prevalence in other oral and extraoral diseases.
Collapse
Affiliation(s)
- Madeline Krieger
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Yasser M AbdelRahman
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Giza, Egypt; Predicine, Hayward, CA, USA
| | - Dongseok Choi
- Department of Community Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; School of Public Health, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Elizabeth A Palmer
- Division of Pediatric Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Anna Yoo
- Division of Pediatric Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Sean McGuire
- Division of Pediatric Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Jens Kreth
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Justin Merritt
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
3
|
Vanhee M, Floré K, Vanthourenhout S, Hellemans J, Muyldermans A, Reynders M. Implementation of full-length 16S nanopore sequencing for bacterial identification in a clinical diagnostic setting. Diagn Microbiol Infect Dis 2024; 108:116156. [PMID: 38061217 DOI: 10.1016/j.diagmicrobio.2023.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 01/22/2024]
Abstract
This study describes the implementation of 16S nanopore sequencing in a diagnostic lab for pathogen identification without prior enrichment. First, the universality of the test and taxonomic resolution was evaluated for 78 clinically relevant bacteria (69 known and 9 unknown bacterial cultures). Next, the diagnostic value of the test was evaluated based on clinical samples. It was shown that 16S sequencing can be used both for identification of unknown cultures and to find bacteria directly in the clinical sample without cultivation. All culture-positive samples (n=11) tested positive with 16S sequencing directly performed on the sample, but bacteria were found as well in 15/30 culture-negative samples. Pathogenic bacteria were found in a background of commensal flora, and even complex polymicrobial infections could be unraveled. This study demonstrates the feasibility of implementing 16S nanopore sequencing in a clinical diagnostic setting and demonstrates its value for the diagnosis of culture-negative and polymicrobial infections.
Collapse
Affiliation(s)
- Merijn Vanhee
- Department of Laboratory Medicine, General Hospital Sint-Jan Brugge, Ruddershove 10, 8000, Brugge, Belgium.
| | - Katelijne Floré
- Department of Laboratory Medicine, General Hospital Sint-Jan Brugge, Ruddershove 10, 8000, Brugge, Belgium
| | - Sanne Vanthourenhout
- Department of Laboratory Medicine, General Hospital Sint-Jan Brugge, Ruddershove 10, 8000, Brugge, Belgium
| | - Jorn Hellemans
- Department of Laboratory Medicine, General Hospital Sint-Jan Brugge, Ruddershove 10, 8000, Brugge, Belgium
| | - Astrid Muyldermans
- Department of Laboratory Medicine, General Hospital Sint-Jan Brugge, Ruddershove 10, 8000, Brugge, Belgium
| | - Marijke Reynders
- Department of Laboratory Medicine, General Hospital Sint-Jan Brugge, Ruddershove 10, 8000, Brugge, Belgium
| |
Collapse
|
4
|
Krieger M, Guo M, Merritt J. Reexamining the role of Fusobacterium nucleatum subspecies in clinical and experimental studies. Gut Microbes 2024; 16:2415490. [PMID: 39394990 PMCID: PMC11486156 DOI: 10.1080/19490976.2024.2415490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
The Gram-negative anaerobic species Fusobacterium nucleatum was originally described as a commensal organism from the human oral microbiome. However, it is now widely recognized as a key inflammophilic pathobiont associated with a wide variety of oral and extraoral diseases. Historically, F. nucleatum has been classified into four subspecies that have been generally considered as functionally interchangeable in their pathogenic potential. Recent studies have challenged this notion, as clinical data reveal a highly biased distribution of F. nucleatum subspecies within disease sites of both inflammatory oral diseases and various malignancies. This review details the historical basis for the F. nucleatum subspecies designations and summarizes our current understanding of the similarities and distinctions between these organisms to provide important context for future clinical and laboratory studies of F. nucleatum.
Collapse
Affiliation(s)
- Madeline Krieger
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Mingzhe Guo
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Justin Merritt
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| |
Collapse
|
5
|
Krieger M, AbdelRahman YM, Choi D, Palmer EA, Yoo A, McGuire S, Kreth J, Merritt J. The prevalence of Fusobacterium nucleatum subspecies in the oral cavity stratifies by local health status. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563997. [PMID: 37961321 PMCID: PMC10634819 DOI: 10.1101/2023.10.25.563997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The ubiquitous inflammophilic pathobiont Fusobacterium nucleatum is widely recognized for its strong association with a variety of human dysbiotic diseases such as periodontitis and oral/extraoral abscesses, as well as multiple types of cancer. F. nucleatum is currently subdivided into four subspecies: F. nucleatum subspecies nucleatum (Fn. nucleatum), animalis (Fn. animalis), polymorphum (Fn. polymorphum), and vincentii/fusiforme (Fn. vincentii). Although these subspecies have been historically considered as functionally interchangeable in the oral cavity, direct clinical evidence is largely lacking for this assertion. Consequently, we assembled a collection of oral clinical specimens to determine whether F. nucleatum subspecies prevalence in the oral cavity stratifies by local oral health status. Patient-matched clinical specimens of both disease-free dental plaque and odontogenic abscess were analyzed with newly developed culture-dependent and culture-independent approaches using 44 and 60 oral biofilm/tooth abscess paired specimens, respectively. Most oral cavities were found to simultaneously harbor multiple F. nucleatum subspecies, with a greater diversity present within dental plaque compared to abscesses. In dental plaque, Fn. polymorphum is clearly the dominant organism, but this changes dramatically within odontogenic abscesses where Fn. animalis is heavily favored over all other fusobacteria. Surprisingly, the most commonly studied F. nucleatum subspecies, Fn. nucleatum, is only a minor constituent in the oral cavity. To gain further insights into the genetic basis for these phenotypes, we subsequently performed pangenome, phylogenetic, and functional enrichment analyses of oral fusobacterial genomes using the Anvi'o platform, which revealed significant genotypic distinctions among F. nucleatum subspecies. Accordingly, our results strongly support a taxonomic reassignment of each F. nucleatum subspecies into distinct Fusobacterium species. Of these, Fn. animalis should be considered as the most clinically relevant at sites of active inflammation, despite being among the least characterized oral fusobacteria.
Collapse
Affiliation(s)
- Madeline Krieger
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Yasser M. AbdelRahman
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Dongseok Choi
- Department of Community Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- School of Public Health, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Elizabeth A. Palmer
- Division of Pediatric Dentistry, Department of Regenerative and Reconstructive Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Anna Yoo
- Division of Pediatric Dentistry, Department of Regenerative and Reconstructive Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Sean McGuire
- Division of Pediatric Dentistry, Department of Regenerative and Reconstructive Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Division of Pediatric Dentistry, Department of Regenerative and Reconstructive Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| |
Collapse
|
6
|
Molecular microbiological characteristics of gingival pockets in the periodontal diseases of dogs. J Vet Res 2023; 67:115-122. [PMID: 37008776 PMCID: PMC10062037 DOI: 10.2478/jvetres-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Abstract
Introduction
Canine periodontitis results among other factors from a disturbed balance of dental plaque microflora and an inadequate host inflammatory response to a stimulus. This investigation sought to identify microorganisms associated with canine periodontitis.
Material and Methods
Microbiological analysis was undertaken of gingival pockets in an experimental group of 36 dogs with periodontal diseases. Swabs were collected with the use of Pet Test (MIP Pharma, Berlin, Germany) from patients with gingival pockets deeper than 5 mm. Samples were aggregated and placed in separate shipping containers with the Pet Test kit.
Results
Identification was made of the most common microorganisms, e.g. Porphyromonas gingivalis, Treponema denticola and Prevotella intermedia. The red complex constituted the largest proportion of all analysed organisms (84.26%). Capnocytophaga gingivalis was isolated from 33 dogs, Peptostreptococcus micros from 32 dogs, Fusobacterium nucleatum from 29 animals and P. intermedia from 20.
Conclusion
The highest percentage of pathogens was supplied by P. gingivalis (61%). It is thought that dogs acquire them by means of cross-species transmission. The inter-study variability of results may depend not only on the method of periopathogen detection, but also on environmental factors, host immune status or genetic background. Depending on the state of periodontal disease, patients show varied microbiological profiles of the gingival pockets.
Collapse
|
7
|
Șurlin P, Nicolae FM, Șurlin VM, Pătrașcu Ș, Ungureanu BS, Didilescu AC, Gheonea DI. Could Periodontal Disease through Periopathogen Fusobacterium Nucleatum be an Aggravating Factor for Gastric Cancer? J Clin Med 2020; 9:jcm9123885. [PMID: 33260439 PMCID: PMC7761398 DOI: 10.3390/jcm9123885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease affects the supporting tissues of the teeth, being a chronic inflammatory disease caused by specific microorganisms from subgingival biofilm. Fusobacterium nucleatum is a Gram-negative anaerobic bacterium that acts as a periodontal pathogen, being an important factor in linking Gram-positive and Gram-negative bacteria in the periodontal biofilm, but its involvement in systemic diseases has also been found. Several studies regarding the implication of Fusobacterium nucleatum in gastro-enterological cancers have been conducted. The present review aims to update and systematize the latest information about Fusobacterium nucleatum in order to evaluate the possibility of an association between periodontal disease and the evolution of gastroenterological cancers through the action of Fusobacterium nucleatum, highlighting gastric cancer. This would motivate future research on the negative influence of periodontal pathology on the evolution of gastric cancer in patients suffering from both pathologies.
Collapse
Affiliation(s)
- Petra Șurlin
- Department of Periodontology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Flavia Mirela Nicolae
- Department of Periodontology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Correspondence: (F.M.N.); (V.M.S.)
| | - Valeriu Marin Șurlin
- Department 1st of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Correspondence: (F.M.N.); (V.M.S.)
| | - Ștefan Pătrașcu
- Department 1st of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Bogdan Silviu Ungureanu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| | - Andreea Cristiana Didilescu
- Department of Embriology, University of Medicine and Pharmacy Carol Davila of Bucharest, 020021 Bucharest, Romania;
| | - Dan Ionuț Gheonea
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| |
Collapse
|
8
|
Miller JM, Binnicker MJ, Campbell S, Carroll KC, Chapin KC, Gilligan PH, Gonzalez MD, Jerris RC, Kehl SC, Patel R, Pritt BS, Richter SS, Robinson-Dunn B, Schwartzman JD, Snyder JW, Telford S, Theel ES, Thomson RB, Weinstein MP, Yao JD. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis 2018; 67:e1-e94. [PMID: 29955859 PMCID: PMC7108105 DOI: 10.1093/cid/ciy381] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
The critical nature of the microbiology laboratory in infectious disease diagnosis calls for a close, positive working relationship between the physician/advanced practice provider and the microbiologists who provide enormous value to the healthcare team. This document, developed by experts in laboratory and adult and pediatric clinical medicine, provides information on which tests are valuable and in which contexts, and on tests that add little or no value for diagnostic decisions. This document presents a system-based approach rather than specimen-based approach, and includes bloodstream and cardiovascular system infections, central nervous system infections, ocular infections, soft tissue infections of the head and neck, upper and lower respiratory infections, infections of the gastrointestinal tract, intra-abdominal infections, bone and joint infections, urinary tract infections, genital infections, and other skin and soft tissue infections; or into etiologic agent groups, including arthropod-borne infections, viral syndromes, and blood and tissue parasite infections. Each section contains introductory concepts, a summary of key points, and detailed tables that list suspected agents; the most reliable tests to order; the samples (and volumes) to collect in order of preference; specimen transport devices, procedures, times, and temperatures; and detailed notes on specific issues regarding the test methods, such as when tests are likely to require a specialized laboratory or have prolonged turnaround times. In addition, the pediatric needs of specimen management are also emphasized. There is intentional redundancy among the tables and sections, as many agents and assay choices overlap. The document is intended to serve as a guidance for physicians in choosing tests that will aid them to quickly and accurately diagnose infectious diseases in their patients.
Collapse
Affiliation(s)
| | - Matthew J Binnicker
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Karen C Carroll
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | | - Peter H Gilligan
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill
| | - Mark D Gonzalez
- Department of Pathology, Children’s Healthcare of Atlanta, Georgia
| | - Robert C Jerris
- Department of Pathology, Children’s Healthcare of Atlanta, Georgia
| | | | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Bobbi S Pritt
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Barbara Robinson-Dunn
- Department of Pathology and Laboratory Medicine, Beaumont Health, Royal Oak, Michigan
| | | | - James W Snyder
- Department of Pathology and Laboratory Medicine, University of Louisville, Kentucky
| | - Sam Telford
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts
| | - Elitza S Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Richard B Thomson
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois
| | - Melvin P Weinstein
- Departments of Medicine and Pathology & Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Joseph D Yao
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Borsanelli AC, Lappin DF, Viora L, Bennett D, Dutra IS, Brandt BW, Riggio MP. Microbiomes associated with bovine periodontitis and oral health. Vet Microbiol 2018; 218:1-6. [DOI: 10.1016/j.vetmic.2018.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 01/30/2023]
|
10
|
Bacterial diversity in the feces of dogs with CPV infection. Microb Pathog 2018; 121:70-76. [PMID: 29709688 DOI: 10.1016/j.micpath.2018.04.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 01/14/2023]
Abstract
Canine parvovirus (CPV) is a contagious disease in dogs that has high morbidity and mortality. In cases of infection, the pups tend to have a higher mortality and more severe clinical symptoms than the adult dogs because the dehydration is difficult for pups to bear. Following the natural infection, there is a rapid antibody response neutralizing the extracellular virus. As a result, virus titers in tissue and feces become markedly reduced. Hence, it is important to have an effective symptomatic therapy of supporting animals to survive in the early stages of CPV infection. Furthermore, the co-infection with bacteria could increase the severity of lesions and clinical signs as well. In this paper, we obtained the bacterial diversity in feces of CPV infected dogs with the enrichment of five bacteria genera (Shigella, Peptoclostridium, Peptostreptococcus, Streptococcus, Fusobacterium). These microorganisms may partly result in the intestinal pathology of the infection. In summary, the discussion of the bacterial biodiversity in feces of CPV infected dogs provides further insights into the pathology of CPV disease and the targets of developing more effective treatment strategies.
Collapse
|
11
|
Increased Abundance of Clostridium and Fusobacterium in Gastric Microbiota of Patients with Gastric Cancer in Taiwan. Sci Rep 2018; 8:158. [PMID: 29317709 PMCID: PMC5760541 DOI: 10.1038/s41598-017-18596-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is recognised as a main risk factor for gastric cancer. However, approximately half of the patients with gastritis are negative for H. pylori infection, and the abundance of H. pylori decreases in patients with cancer. In the current study, we profiled gastric epithelium-associated bacterial species in patients with gastritis, intestinal metaplasia, and gastric cancer to identify additional potential pathogenic bacteria. The overall composition of the microbiota was similar between the patients with gastritis and those with intestinal metaplasia. H. pylori was present in half of the non-cancer group, and the dominant bacterial species in the H. pylori-negative patients were Burkholderia, Enterobacter, and Leclercia. The abundance of those bacteria was similar between the cancer and non-cancer groups, whereas the frequency and abundance of H. pylori were significantly lower in the cancer group. Instead, Clostridium, Fusobacterium, and Lactobacillus species were frequently abundant in patients with gastric cancer, demonstrating a gastric cancer-specific bacterial signature. A receiver operating characteristic curve analysis showed that Clostridium colicanis and Fusobacterium nucleatum exhibited a diagnostic ability for gastric cancer. Our findings indicate that the gastric microenvironment is frequently colonised by Clostridium and Fusobacterium in patients with gastric cancer.
Collapse
|
12
|
Kook JK, Park SN, Lim YK, Cho E, Jo E, Roh H, Shin Y, Paek J, Kim HS, Kim H, Shin JH, Chang YH. Genome-Based Reclassification of Fusobacterium nucleatum Subspecies at the Species Level. Curr Microbiol 2017; 74:1137-1147. [PMID: 28687946 DOI: 10.1007/s00284-017-1296-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
Abstract
Fusobacterium nucleatum is classified as four subspecies, subsp. nucleatum, polymorphum, vincentii, and animalis, based on DNA-DNA hybridization (DDH) patterns, phenotypic characteristics, and/or multilocus sequence analysis (MLSA). The gold standards for classification of bacterial species are DDH and 16S ribosomal RNA gene (16S rDNA) sequence homology. The thresholds of DDH and 16S rDNA similarity for delineation of bacterial species have been suggested to be >70 and 98.65%, respectively. Average nucleotide identity (ANI) and genome-to-genome distance (GGD) analysis based on genome sequences were recently introduced as a replacement for DDH to delineate bacterial species with ANI (95-96%) and GGD (70%) threshold values. In a previous study, F. hwasookii was classified as a new species based on MLSA and DDH results. 16S rDNA similarity between F. hwasookii type strain and F. nucleatum subspecies type strains was higher than that between F. nucleatum subspecies type strains. Therefore, it is possible that the four F. nucleatum subspecies can be classified as Fusobacterium species. In this study, we performed ANI and GGD analyses using the genome sequences of 36 F. nucleatum, five F. hwasookii, and one Fusobacterium periodonticum strain to determine whether the four F. nucleatum subspecies could be classified as species using OrthoANI and ANI web-based softwares provided by ChunLab and Kostas lab, respectively, and GGD calculator offered by German Collection of Microorganisms and Cell Cultures. ANI values calculated from OrthoANI and ANI calculators between the type strains of F. nucleatum subspecies ranged from 89.80 to 92.97 and from 90.40 to 91.90%, respectively. GGD values between the type strains of F. nucleatum subspecies ranged from 42.3 to 46.0%. ANI and GGD values among strains belonging to the same F. nucleatum subspecies, subsp. nucleatum, subsp. polymorphum, subsp. vincentii, and subsp. animalis were >96 and >68.2%, respectively. These results strongly suggest that F. nucleatum subsp. nucleatum, subsp. polymorphum, subsp. vincentii, and subsp. animalis should be classified as F. nucleatum, F. polymorphum, F. vincentii, and F. animalis, respectively.
Collapse
Affiliation(s)
- Joong-Ki Kook
- Korean Collection for Oral Microbiology, Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea. .,Oral Biology Research Institute, Chosun University, Gwangju, Republic of Korea.
| | - Soon-Nang Park
- Korean Collection for Oral Microbiology, Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Yun Kyong Lim
- Korean Collection for Oral Microbiology, Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Eugene Cho
- Korean Collection for Oral Microbiology, Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Eojin Jo
- Korean Collection for Oral Microbiology, Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | | | - Yeseul Shin
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Jayoung Paek
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Hwa-Sook Kim
- Department of Dental Hygiene, Chunnam Techno University, Gokseong-gun, Chunnam, Republic of Korea
| | - Hongik Kim
- Vitabio, Inc., Daejeon, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Hyo Chang
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea.
| |
Collapse
|
13
|
Chenicheri S, R U, Ramachandran R, Thomas V, Wood A. Insight into Oral Biofilm: Primary, Secondary and Residual Caries and Phyto-Challenged Solutions. Open Dent J 2017; 11:312-333. [PMID: 28839480 PMCID: PMC5543615 DOI: 10.2174/1874210601711010312] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/15/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Dental caries is known to be one of the most widespread, chronic infections affecting all ages and populations worldwide. The plethora of oral microbial population paves way for various endogenous infections and plays a crucial role in polymicrobial interactions contributing to biofilm-mediated diseases like caries and periodontal diseases. METHODS Extensive literature survey was conducted using the scientific databases like PubMed, Google scholar, Science Direct, etc. using the key words like dental caries, orodental infections, dental microbes, dental biofilm, secondary caries, phytotherapy, etc. The literature was analyzed thoroughly and critical review was performed. RESULTS The risk of development of secondary caries and residual caries further results in treatment failure. Drug resistance developed by oral microbes and further side effects pose serious hurdles in the current therapeutic strategies. The hyperactivities of various MMPs and the resulting massive ECM degradation are the challenging part in the design of effective therapeutic approaches. Anticariogenic phytotherapy is well appreciated owing to lesser side effects and versatility of their action. But appreciable outcomes regarding the phytochemical bioavailability and bioretention are still challenging. Site-specific delivery of phytoagents at the infected site may enhance the efficiency of these drugs. Accordingly emerging phytodentistry can be promising for the management of secondary and residual caries. CONCLUSION This article presents major cariogens and their mechanisms in initiating and aggravating dental caries. Effectiveness of phytotherapy and different mode of action of phytochemicals against cariogens are outlined. The article also raises major concerns and possibilities of phytochemical based therapeutics to be applied in the clinical arena of caries management.
Collapse
Affiliation(s)
- Smitha Chenicheri
- Department of Microbiology, Karpagam University, Coimbatore, Tamil Nadu, India.,Microbiology Division, Biogenix Research Center for Molecular Biology and Applied Sciences, Thiruvananthapuram, Kerala, India.,Department of Microbiology, PMS Dental college and Research Center, Thiruvananthapuram, Kerala, India
| | - Usha R
- Department of Microbiology, Karpagam University, Coimbatore, Tamil Nadu, India
| | - Rajesh Ramachandran
- Microbiology Division, Biogenix Research Center for Molecular Biology and Applied Sciences, Thiruvananthapuram, Kerala, India
| | - Vinoy Thomas
- Department of Materials Science & Engineering, Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Andrew Wood
- Department of Materials Science & Engineering, Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| |
Collapse
|
14
|
Goldstein EJ, Abrahamian FM. Infections from Pets. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Mailhe M, Ricaboni D, Vitton V, Benezech A, Dubourg G, Michelle C, Andrieu C, Armstrong N, Bittar F, Fournier PE, Raoult D, Million M. Noncontiguous finished genome sequence and description of Fusobacterium massiliense sp. nov. isolated from human duodenum. New Microbes New Infect 2016; 16:3-12. [PMID: 28116104 PMCID: PMC5225283 DOI: 10.1016/j.nmni.2016.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/01/2016] [Indexed: 11/13/2022] Open
Abstract
The strain Marseille-P2749T (= CSUR P2749 = DSM 103085) was isolated as part of culturomics study from a liquid duodenum sample from a French man. Bacterial cells were Gram-negative bacilli, fusiform shaped and non–spore forming, and they grew in microaerophilic and anaerobic atmosphere. Its genome is 1 809 169 bp long and contains 1646 protein-coding genes. The DNA G+C content was 27.33 mol%. This strain exhibited a 95.9% sequence similarity with Fusobacterium periodonticum, the phylogenetically closest species with standing in nomenclature. Strain Marseille-P2749T is suggested to be a novel species belonging to the genus Fusobacterium, for which the name Fusobacterium massiliense sp. nov. is proposed.
Collapse
Affiliation(s)
- M Mailhe
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Marseille, France
| | - D Ricaboni
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Marseille, France; Département des sciences cliniques et biomédicales, Luigi Sacco, Division des Maladies Infectieuses III, Université de Milan, Milan, Italy
| | - V Vitton
- Service de Gastroentérologie, Hopital Nord, Assistance Publique-Hopitaux de Marseille, Marseille, France
| | - A Benezech
- Service de Gastroentérologie, Hopital Nord, Assistance Publique-Hopitaux de Marseille, Marseille, France
| | - G Dubourg
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Marseille, France
| | - C Michelle
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Marseille, France
| | - C Andrieu
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Marseille, France
| | - N Armstrong
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Marseille, France
| | - F Bittar
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Marseille, France
| | - P-E Fournier
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Marseille, France
| | - D Raoult
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Marseille, France; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Million
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Marseille, France
| |
Collapse
|
16
|
De Witte C, Flahou B, Ducatelle R, Smet A, De Bruyne E, Cnockaert M, Taminiau B, Daube G, Vandamme P, Haesebrouck F. Detection, isolation and characterization of Fusobacterium gastrosuis sp. nov. colonizing the stomach of pigs. Syst Appl Microbiol 2016; 40:42-50. [PMID: 27816261 DOI: 10.1016/j.syapm.2016.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 11/27/2022]
Abstract
Nine strains of a novel Fusobacterium sp. were isolated from the stomach of 6-8 months old and adult pigs. The isolates were obligately anaerobic, although they endured 2h exposure to air. Phylogenetic analysis based on 16S rRNA and gyrase B genes demonstrated that the isolates showed high sequence similarity with Fusobacterium mortiferum, Fusobacterium ulcerans, Fusobacterium varium, Fusobacterium russii and Fusobacterium necrogenes, but formed a distinct lineage in the genus Fusobacterium. Comparative analysis of the genome of the type strain of this novel Fusobacterium sp. confirmed that it is different from other recognized Fusobacterium spp. DNA-DNA hybridization, fingerprinting and genomic %GC determination further supported the conclusion that the isolates belong to a new, distinct species. The isolates were also distinguishable from these and other Fusobacterium spp. by phenotypical characterization. The strains produced indole and exhibited proline arylamidase and glutamic acid decarboxylase activity. They did not hydrolyse esculin, did not exhibit pyroglutamic acid arylamidase, valine arylamidase, α-galactosidase, β-galactosidase, β-galactosidase-6-phosphate or α-glucosidase activity nor produced acid from cellobiose, glucose, lactose, mannitol, mannose, maltose, raffinose, saccharose, salicin or trehalose. The major fatty acids were C16:0 and C18:1ω9c. The name Fusobacterium gastrosuis sp. nov. is proposed for the novel isolates with the type strain CDW1(T) (=DSM 101753(T)=LMG 29236(T)). We also demonstrated that Clostridium rectum and mortiferum Fusobacterium represent the same species, with nomenclatural priority for the latter.
Collapse
Affiliation(s)
- C De Witte
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - B Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - R Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - A Smet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E De Bruyne
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Cnockaert
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - B Taminiau
- Department of Food Sciences, FARAH, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - G Daube
- Department of Food Sciences, FARAH, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - P Vandamme
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - F Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
17
|
Abstract
Humans and cats have shared a close relationship since ancient times. Millions of cats are kept as household pets, and 34% of households have cats. There are numerous diseases that may be transmitted from cats to humans. General modes of transmission, with some overlapping features, can occur through inhalation (e.g., bordetellosis); vector-borne spread (e.g., ehrlichiosis); fecal-oral route (e.g., campylobacteriosis); bite, scratch, or puncture (e.g., rabies); soil-borne spread (e.g., histoplasmosis); and direct contact (e.g., scabies). It is also likely that the domestic cat can potentially act as a reservoir for many other zoonoses that are not yet recognized. The microbiology of cat bite wound infections in humans is often polymicrobial with a broad mixture of aerobic (e.g., Pasteurella, Streptococcus, Staphylococcus) and anaerobic (e.g., Fusobacterium, Porphyromonas, Bacteroides) microorganisms. Bacteria recovered from infected cat bite wounds are most often reflective of the oral flora of the cat, which can also be influenced by the microbiome of their ingested prey and other foods. Bacteria may also originate from the victim's own skin or the physical environment at the time of injury.
Collapse
|
18
|
Gao W, Chan Y, You M, Lacap-Bugler DC, Leung WK, Watt RM. In-depth snapshot of the equine subgingival microbiome. Microb Pathog 2016; 94:76-89. [DOI: 10.1016/j.micpath.2015.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022]
|
19
|
Laverty G, Gilmore BF, Jones DS, Coyle L, Folan M, Breathnach R. Antimicrobial efficacy of an innovative emulsion of medium chain triglycerides against canine and feline periodontopathogens. J Small Anim Pract 2015; 56:253-63. [PMID: 25728584 DOI: 10.1111/jsap.12344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 10/29/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To test the in vitro antimicrobial efficacy of a non-toxic emulsion of free fatty acids against clinically relevant canine and feline periodontopathogens METHODS Antimicrobial kill kinetics were established utilising an alamarBlue(®) viability assay against 10 species of canine and feline periodontopathogens in the biofilm mode of growth at a concentration of 0·125% v/v medium chain triglyceride (ML:8) emulsion. The results were compared with 0·12% v/v chlorhexidine digluconate and a xylitol-containing dental formulation. Mammalian cellular cytotoxicity was also investigated for both the ML:8 emulsion and chlorhexidine digluconate (0·25 to 0·0625% v/v) using in vitro tissue culture techniques. RESULTS No statistically significant difference was observed in the antimicrobial activity of the ML:8 emulsion and chlorhexidine digluconate; a high percentage kill rate (>70%) was achieved within 5 minutes of exposure and was maintained at subsequent time points. A statistically significant improvement in antibiofilm activity was observed with the ML:8 emulsion compared with the xylitol-containing formulation. The ML:8 emulsion possessed a significantly lower (P < 0·001) toxicity profile compared with the chlorhexidine digluconate in mammalian cellular cytotoxicity assays. CLINICAL SIGNIFICANCE The ML:8 emulsion exhibited significant potential as a putative effective antimicrobial alternative to chlorhexidine- and xylitol- based products for the reduction of canine and feline periodontopathogens.
Collapse
Affiliation(s)
- G Laverty
- Ward Research & Development Ltd., Glasdrumman, Milltown, Monaghan, Ireland; Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queens University Belfast, Belfast BT9 7BL
| | | | | | | | | | | |
Collapse
|
20
|
Baron EJ, Miller JM, Weinstein MP, Richter SS, Gilligan PH, Thomson RB, Bourbeau P, Carroll KC, Kehl SC, Dunne WM, Robinson-Dunn B, Schwartzman JD, Chapin KC, Snyder JW, Forbes BA, Patel R, Rosenblatt JE, Pritt BS. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)(a). Clin Infect Dis 2013; 57:e22-e121. [PMID: 23845951 PMCID: PMC3719886 DOI: 10.1093/cid/cit278] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/18/2022] Open
Abstract
The critical role of the microbiology laboratory in infectious disease diagnosis calls for a close, positive working relationship between the physician and the microbiologists who provide enormous value to the health care team. This document, developed by both laboratory and clinical experts, provides information on which tests are valuable and in which contexts, and on tests that add little or no value for diagnostic decisions. Sections are divided into anatomic systems, including Bloodstream Infections and Infections of the Cardiovascular System, Central Nervous System Infections, Ocular Infections, Soft Tissue Infections of the Head and Neck, Upper Respiratory Infections, Lower Respiratory Tract infections, Infections of the Gastrointestinal Tract, Intraabdominal Infections, Bone and Joint Infections, Urinary Tract Infections, Genital Infections, and Skin and Soft Tissue Infections; or into etiologic agent groups, including Tickborne Infections, Viral Syndromes, and Blood and Tissue Parasite Infections. Each section contains introductory concepts, a summary of key points, and detailed tables that list suspected agents; the most reliable tests to order; the samples (and volumes) to collect in order of preference; specimen transport devices, procedures, times, and temperatures; and detailed notes on specific issues regarding the test methods, such as when tests are likely to require a specialized laboratory or have prolonged turnaround times. There is redundancy among the tables and sections, as many agents and assay choices overlap. The document is intended to serve as a reference to guide physicians in choosing tests that will aid them to diagnose infectious diseases in their patients.
Collapse
Affiliation(s)
- Ellen Jo Baron
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The use of a rapid assay to detect the neuraminidase production in oral Porphyromonas spp. isolated from dogs and humans. J Microbiol Methods 2013; 94:159-60. [PMID: 23811210 DOI: 10.1016/j.mimet.2013.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 11/23/2022]
Abstract
Neuraminidase was produced by 32.1% and 28.5% of Porphyromonas from dogs with and without periodontitis, respectively; and by 31.8% of bacteria from humans. The presence of neuraminidase in Porphyromonas spp. suggests that this enzyme can be involved with the pathogenesis of the periodontal disease, and the use of this assay to detect the neuraminidase production in oral Porphyromonas species is suggested.
Collapse
|
22
|
Senhorinho GN, Nakano V, Liu C, Song Y, Finegold SM, Avila-Campos MJ. Occurrence and antimicrobial susceptibility of Porphyromonas spp. and Fusobacterium spp. in dogs with and without periodontitis. Anaerobe 2012; 18:381-5. [DOI: 10.1016/j.anaerobe.2012.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/26/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
|
23
|
Abstract
The microbiology of animal bite wound infections in humans is often polymicrobial, with a broad mixture of aerobic and anaerobic microorganisms. Bacteria recovered from infected bite wounds are most often reflective of the oral flora of the biting animal, which can also be influenced by the microbiome of their ingested prey and other foods. Bacteria may also originate from the victim's own skin or the physical environment at the time of injury. Our review has focused on bite wound infections in humans from dogs, cats, and a variety of other animals such as monkeys, bears, pigs, ferrets, horses, sheep, Tasmanian devils, snakes, Komodo dragons, monitor lizards, iguanas, alligators/crocodiles, rats, guinea pigs, hamsters, prairie dogs, swans, and sharks. The medical literature in this area has been made up mostly of small case series or case reports. Very few studies have been systematic and are often limited to dog or cat bite injuries. Limitations of studies include a lack of established or inconsistent criteria for an infected wound and a failure to utilize optimal techniques in pathogen isolation, especially for anaerobic organisms. There is also a lack of an understanding of the pathogenic significance of all cultured organisms. Gathering information and conducting research in a more systematic and methodical fashion through an organized research network, including zoos, veterinary practices, and rural clinics and hospitals, are needed to better define the microbiology of animal bite wound infections in humans.
Collapse
|
24
|
Thomas N, Brook I. Animal bite-associated infections: microbiology and treatment. Expert Rev Anti Infect Ther 2011; 9:215-26. [PMID: 21342069 DOI: 10.1586/eri.10.162] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human and animal bites may lead to serious infection. The organisms involved tend to originate from the oral cavity of the offending biter, as well as the environment where the injury occurred. A variety of aerobic as well as anaerobic organisms have been isolated from bite wounds, with infection ranging from localized cellulitis to systemic dissemination, leading to severe disease ranging from abscess to bone and joint infection, to endocarditis and brain abscess. Immediate wound management, including recognition of the most commonly associated infectious pathogens, and judicious use of empiric antibiotics are crucial in providing the best care after a bite. Here, we discuss the common animal bite associated infections, and provide the most up to date information regarding their management.
Collapse
Affiliation(s)
- Nicole Thomas
- USAF, Fellow Pediatric Infectious Diseases, National Capitol Consortium 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | |
Collapse
|
25
|
Infections from pets. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Shah HN, Olsen I, Bernard K, Finegold SM, Gharbia S, Gupta RS. Approaches to the study of the systematics of anaerobic, gram-negative, non-sporeforming rods: current status and perspectives. Anaerobe 2009; 15:179-94. [PMID: 19695337 DOI: 10.1016/j.anaerobe.2009.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 08/11/2009] [Indexed: 11/29/2022]
Abstract
The present article gives an overview of recent taxonomic changes among the Gram-negative, anaerobic rods, briefly highlighting areas where the biology and ecology have a bearing on recent nomenclatorial changes. The focus is among the genera Bacteroides, Prevotella, Porphyromonas, Leptotrichia, Dysgonomonas, Fusobacterium and the Synergistes group and additionally demonstrates the value of conserved indels and group-specific proteins for identifying and circumscribing many of these taxa and the Bacteroidetes-Chlorobi species in general.
Collapse
Affiliation(s)
- Haroun N Shah
- Molecular Identification Services Unit, Department for Bioanalysis and Horizon Technologies, Centre for Infections, Health Protection Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | | | | | | | | | | |
Collapse
|
27
|
Phenotypic and genotypic analyses of clinical Fusobacterium nucleatum and Fusobacterium periodonticum isolates from the human gut. Anaerobe 2008; 14:301-9. [PMID: 19114111 DOI: 10.1016/j.anaerobe.2008.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/02/2008] [Accepted: 12/04/2008] [Indexed: 12/14/2022]
Abstract
Fusobacterium nucleatum is a Gram-negative anaerobic rod that is part of the normal human microflora, and has also been associated with various infections. Bacterial strains belonging to the species are typically heterogeneous in both phenotype and genotype, which can hinder their identification in a clinical setting. The majority of F. nucleatum isolates originate from oral sites, however the species is also a resident of the human gastrointestinal tract. The aim of this study was to compare F. nucleatum isolates from human intestinal biopsy samples to try and determine whether isolates from this site are divergent from oral isolates. We used a variety of phenotypic and genotypic markers to compare 21 F. nucleatum and Fusobacterium periodonticum isolates from the GI tract to oral isolates and recognized type strains in order to study heterogeneity within this set. 16S rDNA and rpoB gene sequence analysis allowed us to build phylogenetic trees that consistently placed isolates into distinct clusters. 16S rDNA copy number analyses using Denaturing Gradient Gel Electrophoresis (DGGE) demonstrated potential for use as a method to examine clonality amongst species. Phenotypic analyses gave variable results that were generally unhelpful in distinguishing between phylogenetic clusters. Our results suggest that a) F. periodonticum isolates are not restricted to the oral niche; b) phenotypic classification is not sufficient to subspeciate isolates; c) heterogeneity within the species is extensive but constrained; and d) F. nucleatum isolates from the gut tend to identify with the animalis subspecies.
Collapse
|
28
|
Gmür R, Munson MA, Wade WG. Genotypic and phenotypic characterization of fusobacteria from Chinese and European patients with inflammatory periodontal diseases. Syst Appl Microbiol 2006; 29:120-30. [PMID: 16464693 DOI: 10.1016/j.syapm.2005.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Indexed: 10/25/2022]
Abstract
Phylogenetic and antigenic studies were performed on 48 human oral Fusobacterium strains from Chinese patients with either necrotizing ulcerative gingivitis (NUG) or gingivitis and on 23 Fusobacterium nucleatum or Fusobacterium periodonticum strains from European periodontitis patients. Alignment of partial 16S rRNA gene sequences resulted in a phylogenetic tree that corresponded well with the current classification of oral fusobacteria into F. periodonticum and several subspecies of F. nucleatum, in spite of much minor genetic variability. F. periodonticum, F. nucleatum subsp. animalis and a previously undescribed phylogenetic cluster (C4), that may represent an additional F. nucleatum subspecies, constituted discrete clusters distinct from the remainder of F. nucleatum with high bootstrap values. Chinese and European strains differed markedly with regard to their respective classification patterns, suggesting a predominance of F. peridonticum and F. nucleatum susp. animalis over F. nucleatum subsp. nucleatum and F. nucleatum subsp. fusiforme/vincentii in samples from China. Antigenic typing enabled the association of many previously described serovars with distinct phylogenetic clusters and when applied directly to uncultured clinical samples confirmed the differential distribution of oral Fusobacterium taxa in Chinese and European samples. Bacteria from cluster C4 and F. nucleatum subsp. animalis were significantly more prevalent and accounted for higher cell numbers in NUG than in gingivitis samples, suggesting a possible association of these rarely observed taxa with NUG in Chinese patients.
Collapse
Affiliation(s)
- Rudolf Gmür
- Institute for Oral Biology, Center for Dental-, Oral Medicine and Maxillofacial Surgery, University of Zürich, Plattenstrasse 11, CH-8032 Zürich, Switzerland.
| | | | | |
Collapse
|
29
|
Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microbiol 2005; 54:1909-1910. [PMID: 15545406 DOI: 10.1099/ijs.0.63512-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries (i.e. documents certifying deposition and availability of type strains). It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below, and these authors' names will be included in the author index of the present issue and in the volume author index. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in bacteriological nomenclature. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
|
30
|
Conrads G, Citron DM, Goldstein EJC. Genetic determinant of intrinsic quinolone resistance in Fusobacterium canifelinum. Antimicrob Agents Chemother 2005; 49:434-7. [PMID: 15616329 PMCID: PMC538909 DOI: 10.1128/aac.49.1.434-437.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fourteen fluoroquinolone-resistant fusobacterial strains, originating from cats or dogs, were characterized by sequencing of the 16S-23S and 16S rRNA genes and DNA-DNA hybridization and were described as a new species, Fusobacterium canifelinum. All of the strains are intrinsically resistant (MIC, >4 g/ml) to levofloxacin and other fluoroquinolones. Compared to the quinolone resistance-determining region (gyrA) of the susceptible relative F. nucleatum, we found that Ser79 was replaced with leucine and Gly83 was replaced with arginine.
Collapse
Affiliation(s)
- Georg Conrads
- Division of Oral Microbiology and Immunology University Hospital, Pauwelsstrasse 30, D-52057 Aachen, Germany.
| | | | | |
Collapse
|