Strzyzewska-Jówko I, Jerka-Dziadosz M, Frankel J. Effect of alteration in the global body plan on the deployment of morphogenesis-related protein epitopes labeled by the monoclonal antibody 12G9 in Tetrahymena thermophila.
Protist 2003;
154:71-90. [PMID:
12812371 DOI:
10.1078/143446103764928503]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have employed monoclonal antibodies to reinvestigate the janus mutants of the ciliate Tetrahymena thermophila, which cause reversal of circumferential polarity on the dorsal surface of the cell. This reversal brings about frequent ectopic expression of ventral cortical landmarks, such as a "secondary" oral apparatus, on the dorsal surface. The principal antibody employed, FXXXIX-12G9, immunolabels both transient cortical structures not directly associated with basal bodies (the fission line and the postoral meridional filament) and more permanent structures (apical band and oral crescent) that are associated with basal bodies. 12G9-immunolabeling of janus cells has revealed additional phenotypes, including disorder of ciliary rows. Further, this labeling has shown that the postoral meridional filament is often expressed and the apical band is frequently interrupted on the mid-dorsal surface of janus cells irrespective of whether or not these cells express a "secondary" oral apparatus. Of the permanent structures revealed by 12G9 immunofluorescence, modifications of the oral crescent (OC) are associated with prior modifications in the development of basal body-containing structures in the secondary oral apparatus. The formation of the apical band (AB) is also commonly abnormal in janus cells; analysis of specific abnormalities shows that the AB depends both on its initiation at a specific site near the anterior basal body of apical basal body couplets and on the normal location of these couplets just posterior to the fission line. We also have uncovered an intriguing difference in the reactivity of apical-band filaments to the 12G9 antibody in the two non-allelic janus mutants (janA1 and janC2) that we have investigated. Taken together, our observations indicate that the formation of new cellular structures at division depends both upon pre-existing cytoskeletal structures and upon the positional information provided by large-scale cellular polarities.
Collapse