1
|
Foučková M, Uhrová K, Kubánková A, Pánek T, Čepička I. Lighting lantern above Psalteriomonadidae: Unveiling novel diversity within the genus Psalteriomonas (Discoba: Heterolobosea). Eur J Protistol 2024; 93:126052. [PMID: 38302295 DOI: 10.1016/j.ejop.2024.126052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Psalteriomonadidae are a small family of anaerobic free-living protists belonging to Heterolobosea, Discoba. We cultured 74 new strains of mostly amoeboid Psalteriomonadidae obtained from mainly freshwater habitats and sequenced their 18S rRNA gene. Based on the phylogenetic analysis and genetic distances, we report multiple novel species, four of which we formally describe based on the light-microscopic morphology (Psalteriomonas minuta, P. australis, P. fimbriata, and P. parva). We also examined the ultrastructure of two Psalteriomonas species using transmission electron microscopy. We transfer Sawyeria marylandensis into the genus Psalteriomonas and synonymize Sawyeria with Psalteriomonas. In addition, we studied the flagellate stage of P. marylandensis comb. nov. for the first time, using light and scanning electron microscopy.
Collapse
Affiliation(s)
- Martina Foučková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic
| | - Kristýna Uhrová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic
| | - Aneta Kubánková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic.
| |
Collapse
|
2
|
Andalib S, Mohammad Rahimi H, Niyyati M, Shalileh F, Nemati S, Rouhani S, Zali MR, Mirjalali H, Karanis P. Free-living amoebae in an oil refinery wastewater treatment facility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156301. [PMID: 35636544 DOI: 10.1016/j.scitotenv.2022.156301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Free Living Amoebae (FLA) are ubiquitous microorganisms reported from harsh environmental conditions. Oil refinery facilities consume vast volumes of water during their processes, generating a large amount of wastewater. The present study aimed to evaluate the wastewater treatment process in an oil refinery wastewater treatment facility (ORWWTF) for the presence of FLA. Water samples were collected from an oil refinery wastewater (ORWW) for nine months. After recording physical-chemical features, samples were cultivated onto non-nutrient agar (NNA). The discriminative fragments of the ribosomal RNA (rRNA) gene were amplified and sequenced to characterize the isolated FLA. Phylogenetic tree, and network analysis were employed to evaluate genetic relationships. The thermo- and osmotolerant tests were performed on the isolated FLA. Twenty-five (32.9%) samples were positive for FLA cultivation. Acanthamoeba spp., Vahlkampfiids, and Vermamoeba spp. were detected, of which Acanthamoeba species were predominant. There was no statistical correlation between pH, NH3, PO4, H2S, and TDS with the presence of FLA. A statistical correlation between the presence of FLA and the type of wastewater treatment plants (WWTPs) was significant (P-value = 0.011). All Acanthamoeba spp. isolates belonged to the genotypes T4 (17/21; 80.95%) and T11 (4/21; 19.05%). Vahlkampfiids were Naegleria spp., (7/10; 70%), Tetramitus aberdonicus (1/10; 10%), Learamoeba spp., (1/10; 10%), and Vahlkampfia spp., (1/10; 10%). All three Vermamoeba spp. were V. vermiformis. The ORWW contains toxic materials, and a few microorganisms can stay active in these environments. This is the first study which isolates FLA from such super harsh conditions. For the first time, T. aberdonicus, and Learamoeba spp., were isolated from oily wastewater. Our findings signify the concern due to the distribution of potentially pathogenic FLA to downstream lands via treated wastewater that may be released after treatment processing.
Collapse
Affiliation(s)
- Saeid Andalib
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farzaneh Shalileh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Rouhani
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Panagiotis Karanis
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Nicosia University Medical School, Department of Basic and Clinical Sciences, Nicosia 2408, Cyprus
| |
Collapse
|
3
|
Nylund A, Røed M, Blindheim S, Trösse C, Andersen L. Experimental challenge of Atlantic salmon Salmo salar using clones of Paramoeba perurans, P. pemaquidensis and Tetramitus sp. DISEASES OF AQUATIC ORGANISMS 2021; 145:1-13. [PMID: 34080578 DOI: 10.3354/dao03597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salmon gill disease in Norway is in most cases associated with a range of different pathogens, stress and environmental factors. Paramoeba perurans and other amoebae have been isolated during such disease outbreaks. Other amoebae isolated from salmon with gill disease in Norway include P. pemaquidensis, Tetramitus sp. and Vannella sp. Here we tested the pathogenicity of the first 2 species in challenge experiments. We found that even when clonal cultures of P. pemaquidensis established an infection on the gills of salmon, it failed to cause gill disease, while Tetramitus sp. appeared to be unable to establish a lasting infection on the gills of healthy salmon. The result of the challenge with P. pemaquidensis confirms the results of similar studies performed in the USA and in Australia. Tetramitus sp. is probably a common amoeba in the marine environment, and its presence on the gills of farmed salmon may just be accidental. Based on this study, we conclude that P. perurans is the only known amoeba in marine salmon farming associated with amoebic gill disease in Norway.
Collapse
Affiliation(s)
- Are Nylund
- Department of Biology University of Bergen, 5020 Bergen, Norway
| | | | | | | | | |
Collapse
|
4
|
Park JS. A New Heterolobosean Amoeboflagellate, Tetramitus dokdoensis
n. sp., Isolated from a Freshwater Pond on Dokdo Island in the East Sea, Korea. J Eukaryot Microbiol 2017; 64:771-778. [DOI: 10.1111/jeu.12409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/19/2017] [Accepted: 03/02/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Jong Soo Park
- Department of Oceanography; Research Institute for Dok-do and Ulleung-do Island and Kyungpook Institute of Oceanography, School of Earth System Sciences; Kyungpook National University; 80 Daehakro Bukgu Daegu 41566 Korea
| |
Collapse
|
5
|
Tyml T, Skulinová K, Kavan J, Ditrich O, Kostka M, Dyková I. Heterolobosean amoebae from Arctic and Antarctic extremes: 18 novel strains of Allovahlkampfia, Vahlkampfia and Naegleria. Eur J Protistol 2016; 56:119-133. [PMID: 27643668 DOI: 10.1016/j.ejop.2016.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/14/2016] [Accepted: 08/04/2016] [Indexed: 12/11/2022]
Abstract
The diversity of heterolobosean amoebae, important members of soil, marine and freshwater microeukaryote communities in the temperate zones, is greatly under-explored in high latitudes. To address this imbalance, we studied the diversity of this group of free-living amoebae in the Arctic and the Antarctic using culture dependent methods. Eighteen strain representatives of three heterolobosean genera, Allovahlkampfia Walochnik et Mulec, 2009 (1 strain), Vahlkampfia Chatton et Lalung-Bonnaier, 1912 (2) and Naegleria Alexeieff, 1912 (15) were isolated from 179 samples of wet soil and fresh water with sediments collected in 6 localities. The Allovahkampfia strain is the first representative of the genus from the Antarctic; 14 strains (7 from the Arctic, 7 from the Antarctic) of the highly represented genus Naegleria complete the 'polar' cluster of five Naegleria species previously known from the Arctic and Sub-Antarctic regions, whereas one strain enriches the 'dobsoni' cluster of Naegleria strains of diverse origin. Present isolations of Naegleria polarisDe Jonckheere, 2006 from Svalbard, in the Arctic and Vega Island, in the Antarctic and N. neopolarisDe Jonckheere, 2006 from Svalbard and Greenland in the Arctic, and James Ross Island, the Antarctic demonstrate their bipolar distribution, which in free-living amoebae has so far only been known for Vermistella Morand et Anderson, 2007.
Collapse
Affiliation(s)
- Tomáš Tyml
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; Institute of Parasitology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Kateřina Skulinová
- Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jan Kavan
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Oleg Ditrich
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Martin Kostka
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Iva Dyková
- Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
6
|
Pánek T, Simpson AG, Hampl V, Čepička I. Creneis carolina gen. et sp. nov. (Heterolobosea), a Novel Marine Anaerobic Protist with Strikingly Derived Morphology and Life Cycle. Protist 2014; 165:542-67. [DOI: 10.1016/j.protis.2014.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/05/2014] [Accepted: 05/28/2014] [Indexed: 11/29/2022]
|
7
|
Pánek T, Ptáčková E, Čepička I. Survey on diversity of marine/saline anaerobic Heterolobosea (Excavata: Discoba) with description of seven new species. Int J Syst Evol Microbiol 2014; 64:2280-2304. [PMID: 24729392 DOI: 10.1099/ijs.0.063487-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diversity of the anaerobic Heterolobosea (Excavata: Discoba) is only poorly understood, especially in marine environments. We have isolated and cultured 16 strains of anaerobic heteroloboseid amoebae and flagellates from brackish, marine and saline anoxic habitats worldwide. Phylogenetic analyses of SSU rDNA sequences and light-microscopic observations showed that all the strains belong to the family Psalteriomonadidae, the main anaerobic lineage of Heterolobosea, and that they represent eight species from the genera Monopylocystis, Harpagon and Pseudoharpagon. Seven species are newly isolated and described here as Monopylocystis minor n. sp., Monopylocystis robusta n. sp., Monopylocystis elegans n. sp., Monopylocystis disparata n. sp., Harpagon salinus n. sp., Pseudoharpagon longus n. sp. and Pseudoharpagon tertius n. sp. Amoebae, cysts and the ultrastructure of the genus Pseudoharpagon are presented for the first time.
Collapse
Affiliation(s)
- Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Prague, Czech Republic
| | - Eliška Ptáčková
- Department of Zoology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Prague, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Prague, Czech Republic
| |
Collapse
|
8
|
Harding T, Brown MW, Plotnikov A, Selivanova E, Park JS, Gunderson JH, Baumgartner M, Silberman JD, Roger AJ, Simpson AGB. Amoeba stages in the deepest branching heteroloboseans, including Pharyngomonas: evolutionary and systematic implications. Protist 2012; 164:272-86. [PMID: 23021907 DOI: 10.1016/j.protis.2012.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/16/2012] [Accepted: 08/23/2012] [Indexed: 11/30/2022]
Abstract
The taxon Heterolobosea (Excavata) is a major group of protists well known for its diversity of life stages. Most are amoebae capable of transforming into flagellates (amoeboflagellates), while others are known solely as flagellates or solely as amoebae. The deepest-branching heterolobosean taxon confirmed previously, Pharyngomonas, was generally assumed to be a pure flagellate, suggesting that the amoeba form arose later in the evolution of Heterolobosea sensu lato. Here we report that multiple isolates of Pharyngomonas are actually amoeboflagellates that also have cyst stages, with only amoebae transforming into cysts. The amoeba form of Pharyngomonas showed heterolobosean characteristics (e. g. eruptive movement), but also possessed unusual morphological features like slow-flowing crenulated hyaline crescents with conical subpseudopodia, finger-like projections and branching posterior extensions. Furthermore, phylogenetic analyses of 18S ribosomal RNA gene sequences that included two undescribed species of amoebae showed that Pharyngomonas is not the only deep-branching heterolobosean to possess an amoeba stage. These results suggest that possession of an amoeba stage was ancestral for Heterolobosea, unifying this taxon as a group of species with amoeba stages in their lifecycle or derived from organisms with such stages.
Collapse
Affiliation(s)
- Tommy Harding
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Holland SL, Dyer PS, Bond CJ, James SA, Roberts IN, Avery SV. Candida argentea sp. nov., a copper and silver resistant yeast species. Fungal Biol 2011; 115:909-18. [DOI: 10.1016/j.funbio.2011.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/29/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
|
10
|
Baumgartner M, Eberhardt S, De Jonckheere JF, Stetter KO. Tetramitus thermacidophilus n. sp., an amoeboflagellate from acidic hot springs. J Eukaryot Microbiol 2011; 56:201-6. [PMID: 21462554 DOI: 10.1111/j.1550-7408.2009.00390.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetramitus thermacidophilus n. sp. is a novel thermophilic and acidophilic amoeboflagellate isolated from acidic hot springs in the Caldera Uzon (Kamchatka, Russia) and in Pisciarelli Solfatara (Naples, Italy). We describe it based on physiological, morphological, and sequence data. It was grown in monoxenic culture on the archaeon Acidianus brierleyi as food. Tetramitus thermacidophilus multiplies in a pH range from 1.2 to 5 and in a temperature range from 28 °C to 54 °C. The shortest doubling time was 4.5 h at pH 3 at 45 °C. Its spindle-shaped biflagellated stage was only rarely found in culture. The amoeboid stage shows the typical locomotive form of vahlkampfiid amoebae. Sequence comparisons of the internal transcribed spacer sequences and the small subunit rRNA genes confirm that T. thermacidophilus is a novel species within the genus Tetramitus and that both isolates belong to that species.
Collapse
Affiliation(s)
- Manuela Baumgartner
- Lehrstuhl für Mikrobiologie, Universität Regensburg, D-93053 Regensburg, Germany
| | | | | | | |
Collapse
|
11
|
Laybourn-Parry J, Pearce DA. The biodiversity and ecology of Antarctic lakes: models for evolution. Philos Trans R Soc Lond B Biol Sci 2008; 362:2273-89. [PMID: 17553775 PMCID: PMC2443172 DOI: 10.1098/rstb.2006.1945] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antarctic lakes are characterised by simplified, truncated food webs. The lakes range from freshwater to hypersaline with a continuum of physical and chemical conditions that offer a natural laboratory in which to study evolution. Molecular studies on Antarctic lake communities are still in their infancy, but there is clear evidence from some taxonomic groups, for example the Cyanobacteria, that there is endemicity. Moreover, many of the bacteria have considerable potential as sources of novel biochemicals such as low temperature enzymes and anti-freeze proteins. Among the eukaryotic organisms survival strategies have evolved, among which dependence on mixotrophy in phytoflagellates and some ciliates is common. There is also some evidence of evolution of new species of flagellate in the marine derived saline lakes of the Vestfold Hills. Recent work on viruses in polar lakes demonstrates high abundance and high rates of infection, implying that they may play an important role in genetic exchange in these extreme environments.
Collapse
Affiliation(s)
- Johanna Laybourn-Parry
- Institute for the Environment, Physical Sciences and Applied Mathematics, Faculty of Natural Sciences, University of Keele, Keele, Staffordshire, UK.
| | | |
Collapse
|
12
|
Robinson BS, De Jonckheere JF, Dobson PJ. Two new Tetramitus species (Heterolobosea, Vahlkampfiidae) from cold aquatic environments. Eur J Protistol 2007; 43:1-7. [PMID: 17222745 DOI: 10.1016/j.ejop.2006.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/20/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
Characterisation of the protists of cold environments provides important background for assessing the effects of climate change on microbial communities. Tetramitus angularis n. sp., from aquatic environments in Iceland and Switzerland, is the first vahlkampfiid recognised to have a characteristic Tetramitus flagellate stage combined with pre-formed excystment pores, which are not typical of this genus. T. angularis amoebae have a typical vahlkampfiid locomotive form and contain prominent lipid inclusions. Flagellates have a collar and cytostome, and can be mono- to multi-nucleate with corresponding change in cell shape from cylindrical to ellipsoidal and variable number of flagella. Cysts are round to semi-angular and have 2-5 pores closed by protruding, translucent plugs. A second organism, T. parangularis n. sp. from Alaska, has similar cysts but a flagellate stage has not been recognised; ITS sequence divergence is consistent with species criteria in the Vahlkampfiidae. Phylogenetic analysis of sequence data for the 5.8S rDNA region clusters the new spp. with T. rostratus, T. entericus and T. waccamawensis.
Collapse
Affiliation(s)
- Bret S Robinson
- Australian Water Quality Centre, SA Water Corporation, Bolivar, SA 5110, Australia.
| | | | | |
Collapse
|
13
|
De Jonckheere JF. Isolation and molecular identification of free-living amoebae of the genus Naegleria from Arctic and sub-Antarctic regions. Eur J Protistol 2006; 42:115-23. [PMID: 17070757 DOI: 10.1016/j.ejop.2006.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 01/25/2006] [Accepted: 02/01/2006] [Indexed: 11/20/2022]
Abstract
Twenty-three freshwater samples with sediment taken from two regions in the Arctic, Spitzbergen and Greenland, and one region in sub-Antarctica, Ile de la Possession, were cultured for amoebae at 37 degrees C and room temperature (RT). Only two samples yielded amoebae at 37 degrees C and the two isolates were identified from their morphological features to belong to the genus Acanthamoeba. Vahlkampfiid amoebae were isolated from 11 samples at RT. Morphological analysis of the cysts identified all 11 isolates as belonging to the genus Naegleria, although only about half of them (45%) transformed into flagellates. Ribosomal DNA sequence analysis demonstrated that these isolates represent novel species and that N. antarctica, N. dobsoni and N. chilensis are their closest relatives. Not surprisingly, these three species also grow at lower temperatures (<37 degrees C) than the majority of described Naegleria spp. Two of the eight new species were found in both Arctic and sub-Antarctic regions, and other new species from the Arctic are closely related to new species from the sub-Antarctic. Therefore, it seems the Naegleria gene pool present in the polar regions is different from that found in temperate and tropical regions.
Collapse
|
14
|
Abstract
We have determined the internal transcribed spacer (ITS) sequences (including the 5.8S ribosomal DNA) of 30 strains of 14 species belonging to eight vahlkampfiid genera. Each previously described species has a specific ITS sequence, except for Tetramitus aberdonicus, Tetramitus thorntoni, and Tetramitus jugosus, which have identical ITS sequences. The latter three may therefore constitute a single species despite their apparent phenotypic differences. The ITS sequence appears to be conserved within a species. The species Willaertia magna appears to be ubiquitous. The 5.8S rDNA sequences of Singhamoeba horticola and Learamoeba waccamwensis indicate that they do not represent different genera, but both belong to the genus Tetramitus. The ITS sequences of 16 undescribed vahlkampfiid isolates were determined. Based on these sequences, seven isolates were identified as belonging to described species, while nine probably represent seven new species. Five of these presumed new species belong to the genus Tetramitus, and one each to the genera Vahlkampfia and Paravahlkampfia.
Collapse
|
15
|
Garstecki T, Brown S, De Jonckheere JF. Description of Vahlkampfia signyensis n. sp. (Heterolobosea), based on morphological, ultrastructural and molecular characteristics. Eur J Protistol 2005. [DOI: 10.1016/j.ejop.2005.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|