1
|
IL-37 impairs host resistance to Listeria infection by suppressing macrophage function. Biochem Biophys Res Commun 2017; 485:563-568. [DOI: 10.1016/j.bbrc.2016.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022]
|
2
|
Bettina A, Zhang Z, Michels K, Cagnina RE, Vincent IS, Burdick MD, Kadl A, Mehrad B. M-CSF Mediates Host Defense during Bacterial Pneumonia by Promoting the Survival of Lung and Liver Mononuclear Phagocytes. THE JOURNAL OF IMMUNOLOGY 2016; 196:5047-55. [PMID: 27183631 DOI: 10.4049/jimmunol.1600306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/04/2016] [Indexed: 11/19/2022]
Abstract
Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells, and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. M-CSF has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden, and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, proliferation of precursors, or recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and antimicrobial functions of both lung and liver mononuclear phagocytes during pneumonia, and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and antimicrobial functions of mononuclear phagocytes in the lungs and liver.
Collapse
Affiliation(s)
- Alexandra Bettina
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - Zhimin Zhang
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Kathryn Michels
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - R Elaine Cagnina
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Isaah S Vincent
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Marie D Burdick
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Alexandra Kadl
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA 22908; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908; and
| | - Borna Mehrad
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA 22908; Beirne B. Carter Center for Immunology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
3
|
Bernier T, Tschernig T, Pabst R, Macke O, Steinmueller C, Emmendörffer A. Effects of macrophage‐CSF on pulmonary‐macrophage repopulation after bone marrow transplantation. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.1.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tanja Bernier
- Department of Immunobiology, Fraunhofer Institute of Toxicology and Aerosol Research, 30625 Hannover, Germany
| | - Thomas Tschernig
- Department of Functional and Applied Anatomy, Hannover Medical School, 30623 Hannover, Germany
| | - Reinhard Pabst
- Department of Functional and Applied Anatomy, Hannover Medical School, 30623 Hannover, Germany
| | - Olaf Macke
- Department of Immunobiology, Fraunhofer Institute of Toxicology and Aerosol Research, 30625 Hannover, Germany
| | - Christiane Steinmueller
- Department of Immunobiology, Fraunhofer Institute of Toxicology and Aerosol Research, 30625 Hannover, Germany
| | - Andreas Emmendörffer
- Department of Immunobiology, Fraunhofer Institute of Toxicology and Aerosol Research, 30625 Hannover, Germany
| |
Collapse
|