1
|
Sood U, Müller M, Lan T, Garg G, Singhvi N, Hira P, Singh P, Nigam A, Verma M, Lata P, Kaur H, Kumar A, Rawat CD, Lal S, Aldrich C, Bechthold A, Lal R. Amycolatopsis mediterranei: A Sixty-Year Journey from Strain Isolation to Unlocking Its Potential of Rifamycin Analogue Production by Combinatorial Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2024; 87:424-438. [PMID: 38289177 DOI: 10.1021/acs.jnatprod.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ever since the isolation of Amycolatopsis mediterranei in 1957, this strain has been the focus of research worldwide. In the last 60 years or more, our understanding of the taxonomy, development of cloning vectors and conjugation system, physiology, genetics, genomics, and biosynthetic pathway of rifamycin B production in A. mediterranei has substantially increased. In particular, the development of cloning vectors, transformation system, characterization of the rifamycin biosynthetic gene cluster, and the regulation of rifamycin B production by the pioneering work of Heinz Floss have made the rifamycin polyketide biosynthetic gene cluster (PKS) an attractive target for extensive genetic manipulations to produce rifamycin B analogues which could be effective against multi-drug-resistant tuberculosis. Additionally, a better understanding of the regulation of rifamycin B production and the application of newer genomics tools, including CRISPR-assisted genome editing systems, might prove useful to overcome the limitations associated with low production of rifamycin analogues.
Collapse
Affiliation(s)
- Utkarsh Sood
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi-110007, India
| | - Moritz Müller
- Institute of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Straße 19, 79104, Freiburg, Germany
| | - Tian Lan
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gauri Garg
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi-110007, India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007, India
| | - Princy Hira
- Department of Zoology, Maitreyi College, University of Delhi, Delhi-110003, India
| | - Priya Singh
- Department of Zoology, Maitreyi College, University of Delhi, Delhi-110003, India
| | - Aeshna Nigam
- Department of Zoology, Shivaji College, University of Delhi, Delhi-110027, India
| | - Mansi Verma
- Department of Zoology, Hansraj College, University of Delhi, Delhi-110007, India
| | - Pushp Lata
- Department of Zoology, University of Delhi, Delhi-110007, India
| | - Hardeep Kaur
- Department of Zoology, Ramjas College, University of Delhi, Delhi-110007, India
| | - Abhilash Kumar
- Department of Zoology, Ramjas College, University of Delhi, Delhi-110007, India
| | - Charu Dogra Rawat
- Department of Zoology, Ramjas College, University of Delhi, Delhi-110007, India
| | - Sukanya Lal
- PhiXGen Private Limited, Gurugram, Haryana-122001, India
| | - Courtney Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Andreas Bechthold
- Institute of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Straße 19, 79104, Freiburg, Germany
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana-122001, India
- Acharya Narendra Dev College, University of Delhi, Delhi-110019, India
| |
Collapse
|
2
|
Mejía A, Luna D, Fernández FJ, Barrios-González J, H. Gutierrez L, Reyes AG, Absalón AE, Kelly S. Improving rifamycin production in Amycolatopsis mediterranei by expressing a Vitreoscilla hemoglobin ( vhb) gene fused to a cytochrome P450 monooxygenase domain. 3 Biotech 2018; 8:456. [PMID: 30370197 DOI: 10.1007/s13205-018-1472-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022] Open
Abstract
Expression of the vhb gene encoding hemoglobin from Vitreoscilla stercoraria in several organisms, clearly enhances oxygen-dependent product formation. In a previous work, we expressed the vhb gene that encodes hemoglobin from V. stercoraria in Amycolatopsis mediterranei, resulting in an increase (oxygen-dependent formation) in rifamycin B production. In the present work, we first confirm; by heterologous expression in Escherichia coli, that rif-orf5 from the rifamycin biosynthetic gene cluster, really encodes a cytochrome P450 enzyme, which is the key step for oxygen incorporation in the final biosynthetic product. Likewise, we fused rif-orf5 to the vhb gene, as part of a genetic engineering strategy. The fused genes were used to generate an Amycolatopsis mediterranei transformant (Msb-HbCYP5). Interestingly, the fermentation of Msb-HbCYP5 manifested 1.5-fold higher rifamicin B production than the transformant with only the hemoglobin gene, and 2.2-fold higher than the parental strain.
Collapse
|
3
|
RifZ (AMED_0655) Is a Pathway-Specific Regulator for Rifamycin Biosynthesis in Amycolatopsis mediterranei. Appl Environ Microbiol 2017; 83:AEM.03201-16. [PMID: 28159794 DOI: 10.1128/aem.03201-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/26/2017] [Indexed: 11/20/2022] Open
Abstract
Rifamycin and its derivatives are particularly effective against the pathogenic mycobacteria Mycobacterium tuberculosis and Mycobacterium leprae Although the biosynthetic pathway of rifamycin has been extensively studied in Amycolatopsis mediterranei, little is known about the regulation in rifamycin biosynthesis. Here, an in vivo transposon system was employed to identify genes involved in the regulation of rifamycin production in A. mediterranei U32. In total, nine rifamycin-deficient mutants were isolated, among which three mutants had the transposon inserted in AMED_0655 (rifZ, encoding a LuxR family regulator). The rifZ gene was further knocked out via homologous recombination, and the transcription of genes in the rifamycin biosynthetic gene cluster (rif cluster) was remarkably reduced in the rifZ null mutant. Based on the cotranscription assay results, genes within the rif cluster were grouped into 10 operons, sharing six promoter regions. By use of electrophoretic mobility shift assay and DNase I footprinting assay, RifZ was proved to specially bind to all six promoter regions, which was consistent with the fact that RifZ regulated the transcription of the whole rif cluster. The binding consensus sequence was further characterized through alignment using the RifZ-protected DNA sequences. By use of bionformatic analysis, another five promoters containing the RifZ box (CTACC-N8-GGATG) were identified, among which the binding of RifZ to the promoter regions of both rifK and orf18 (AMED_0645) was further verified. As RifZ directly regulates the transcription of all operons within the rif cluster, we propose that RifZ is a pathway-specific regulator for the rif cluster.IMPORTANCE To this day, rifamycin and its derivatives are still the first-line antituberculosis drugs. The biosynthesis of rifamycin has been extensively studied, and most biosynthetic processes have been characterized. However, little is known about the regulation of the transcription of the rifamycin biosynthetic gene cluster (rif cluster), and no regulator has been characterized. Through the employment of transposon screening, we here characterized a LuxR family regulator, RifZ, as a direct transcriptional activator for the rif cluster. As RifZ directly regulates the transcription of the entire rif cluster, it is considered a pathway-specific regulator for rifamycin biosynthesis. Therefore, as the first regulator characterized for direct regulation of rif cluster transcription, RifZ may provide a new clue for further engineering of high-yield industrial strains.
Collapse
|
4
|
Nigam A, Almabruk KH, Saxena A, Yang J, Mukherjee U, Kaur H, Kohli P, Kumari R, Singh P, Zakharov LN, Singh Y, Mahmud T, Lal R. Modification of rifamycin polyketide backbone leads to improved drug activity against rifampicin-resistant Mycobacterium tuberculosis. J Biol Chem 2015; 289:21142-52. [PMID: 24923585 DOI: 10.1074/jbc.m114.572636] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rifamycin B, a product of Amycolatopsis mediterranei S699, is the precursor of clinically used antibiotics that are effective against tuberculosis, leprosy, and AIDS-related mycobacterial infections. However, prolonged usage of these antibiotics has resulted in the emergence of rifamycin-resistant strains of Mycobacterium tuberculosis. As part of our effort to generate better analogs of rifamycin, we substituted the acyltransferase domain of module 6 of rifamycin polyketide synthase with that of module 2 of rapamycin polyketide synthase. The resulting mutants (rifAT6::rapAT2) of A. mediterranei S699 produced new rifamycin analogs, 24-desmethylrifamycin B and 24-desmethylrifamycin SV, which contained modification in the polyketide backbone. 24-Desmethylrifamycin B was then converted to 24-desmethylrifamycin S, whose structure was confirmed by MS, NMR, and X-ray crystallography. Subsequently, 24-desmethylrifamycin S was converted to 24-desmethylrifampicin, which showed excellent antibacterial activity against several rifampicin-resistant M. tuberculosis strains.
Collapse
|
5
|
Draft Genome Sequence of Rifamycin Derivatives Producing Amycolatopsis mediterranei Strain DSM 46096/S955. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00837-14. [PMID: 25125653 PMCID: PMC4132629 DOI: 10.1128/genomea.00837-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amycolatopsis mediterranei DSM 46096 produces antibiotics of the rifamycin family, 27-demethoxy-27-hydroxyrifamycin B, 25-desacetyl-27-demethoxy-27-hydroxyrifamycin, and 27-demethoxy-27-hydroxyrifamycin SV, which are effective against Gram-negative bacteria. Here, we present the draft genome of A. mediterranei 46096 (approx. 10.2 Mbp) having 104 contigs with a GC content of 71.3% and 9,382 coding sequences.
Collapse
|
6
|
Draft Genome Sequence of the Rifamycin Producer Amycolatopsis rifamycinica DSM 46095. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00662-14. [PMID: 24994803 PMCID: PMC4082003 DOI: 10.1128/genomea.00662-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Amycolatopsis rifamycinica DSM 46095 is an actinobacterium that produces rifamycin SV, an antibiotic used against Mycobacterium tuberculosis. Here, we present the draft genome of DSM 46095, which harbors a novel rifamycin polyketide biosynthetic gene cluster (rif PKS) that differed by 10% in nucleotide sequence from the already reported rif PKS cluster of Amycolatopsis mediterranei S699.
Collapse
|
7
|
Ding L, Maier A, Fiebig HH, Görls H, Lin WH, Peschel G, Hertweck C. Divergolides A-D from a Mangrove Endophyte Reveal an Unparalleled Plasticity in ansa-Macrolide Biosynthesis. Angew Chem Int Ed Engl 2011; 50:1630-4. [DOI: 10.1002/anie.201006165] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Indexed: 11/12/2022]
|
8
|
Ding L, Maier A, Fiebig HH, Görls H, Lin WH, Peschel G, Hertweck C. Divergolides A-D from a Mangrove Endophyte Reveal an Unparalleled Plasticity in ansa-Macrolide Biosynthesis. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Prakash O, Lal R. Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int J Syst Evol Microbiol 2006; 56:2147-2152. [PMID: 16957112 DOI: 10.1099/ijs.0.64080-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A phenanthrene-degrading bacterium, strain TKPT, was isolated from a fly ash dumping site of the thermal power plant in Panki, Kanpur, India, by an enrichment culture method using phenanthrene as the sole source of carbon and energy. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belonged to the genus Sphingobium, as it showed highest sequence similarity to Sphingobium herbicidovorans DSM 11019T (97.3 %) and Sphingomonas cloacae JCM 10874T (96.5 %), compared with only 91–93 % similarity to members of other genera such as Sphingomonas sensu stricto, Novosphingobium, Sphingopyxis and Sphingosinicella. In DNA–DNA hybridization experiments with strains that were closely related phylogenetically and in terms of 16S rRNA gene sequences, i.e. Sphingobium herbicidovorans DSM 11019T and Sphingomonas cloacae JCM 10874T, strain TKPT showed less than 70 % relatedness. Strain TKPT contained sphingoglycolipids SGL-1 and SGL-2 and 18 : 1ω7c as the predominant fatty acid, with 16 : 0 as a minor component and 14 : 0 2-OH as the major 2-hydroxy fatty acid. Thus, phylogenetic analysis, DNA–DNA hybridization, fatty acid and polar lipid profiles and differences in physiological and morphological features from the most closely related members of the Sphingobium group showed that strain TKPT represents a distinct species of Sphingobium. The name Sphingobium fuliginis sp. nov. is proposed, with the type strain TKPT (=MTCC 7295T=CCM 7327T). Sphingomonas cloacae JCM 10874T formed a coherent cluster with members of Sphingobium, did not reduce nitrate to nitrite and had a fatty acid profile similar to those of Sphingobium species; hence Sphingomonas cloacae should be transferred to the genus Sphingobium as Sphingobium cloacae comb. nov., with the type strain JCM 10874T (=DSM 14926T).
Collapse
Affiliation(s)
- Om Prakash
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi - 110 007, India
| | - Rup Lal
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi - 110 007, India
| |
Collapse
|
10
|
He W, Wu L, Gao Q, Du Y, Wang Y. Identification of AHBA biosynthetic genes related to geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. Curr Microbiol 2006; 52:197-203. [PMID: 16502293 DOI: 10.1007/s00284-005-0203-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 10/31/2005] [Indexed: 11/28/2022]
Abstract
To clone and study the geldanamycin biosynthetic gene cluster in Streptomyces hygroscopicus 17997, we designed degenerate primers based on the conserved sequence of the ansamycin 3-amino-5-hydroxybenzoic acid (AHBA) synthase gene. A 755-bp polymerase chain reaction product was obtained from S. hygroscopicus 17997 genomic DNA, which showed high similarity to ansamycin AHBA synthase genes. Through screening the cosmid library of S. hygroscopicus 17997, two loci of separated AHBA biosynthetic gene clusters were discovered. Comparisons of sequence homology and gene organization indicated that the two AHBA biosynthetic gene clusters could be divided into a benzenic and a naphthalenic subgroup. Gene disruption demonstrated that the benzenic AHBA gene cluster is involved in the biosynthesis of geldanamycin. However, the naphthalenic AHBA genes in the genome of Streptomyces hygroscopicus 17997 could not complement the deficiency of the benzenic AHBA genes. This is the first report on the AHBA biosynthetic gene cluster in a geldanamycin-producing strain.
Collapse
Affiliation(s)
- Weiqing He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tiantan Xili No 1, Beijing, 100050, China.
| | | | | | | | | |
Collapse
|
11
|
Bala S, Khanna R, Dadhwal M, Prabagaran SR, Shivaji S, Cullum J, Lal R. Reclassification of Amycolatopsis mediterranei DSM 46095 as Amycolatopsis rifamycinica sp. nov. Int J Syst Evol Microbiol 2004; 54:1145-1149. [PMID: 15280283 DOI: 10.1099/ijs.0.02901-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous experiments have suggested that the rifamycin-producing strain DSM 46095 might not belong to Amycolatopsis mediterranei. Analysis of its 16S rRNA gene sequence and construction of a phylogenetic tree showed most similarity to Amycolatopsis kentuckyensis NRRL B-24129T, Amycolatopsis lexingtonensis NRRL B-24129T and Amycolatopsis pretoriensis NRRL B-24133T, but the strain was probably not a member of any of these species. Results from DNA–DNA hybridization experiments and comparison of DNA profiling patterns using pulsed-field gel electrophoresis also supported the assignment of strain DSM 46095 to a novel species. Analyses of phospholipids, fatty acid methyl esters and physiological characteristics also showed that the differences between different isolates of A. mediterranei and A. mediterranei DSM 46095 were as large as those between Amycolatopsis species. Strain DSM 46095 represents a novel species of the genus Amycolatopsis for which the name Amycolatopsis rifamycinica sp. nov. is proposed, with the type strain NT 19T (=DSM 46095T=ATCC 27643T).
Collapse
MESH Headings
- Actinomycetales/chemistry
- Actinomycetales/classification
- Actinomycetales/genetics
- Actinomycetales/physiology
- Bacterial Typing Techniques
- DNA Fingerprinting
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/chemistry
- Electrophoresis, Gel, Pulsed-Field
- Fatty Acids/analysis
- Fatty Acids/isolation & purification
- Genes, rRNA
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Phospholipids/analysis
- Phospholipids/isolation & purification
- Phylogeny
- Polymorphism, Restriction Fragment Length
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Rifamycins/biosynthesis
- Sequence Analysis, DNA
- Sequence Homology
Collapse
Affiliation(s)
- Shashi Bala
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Richie Khanna
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - M Dadhwal
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - S R Prabagaran
- Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - S Shivaji
- Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - John Cullum
- Department of Genetics, Kaiserslautern University of Technology, 67663 Kaiserslautern, Germany
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi 110007, India
| |
Collapse
|
12
|
Dhingra G, Kumari R, Bala S, Majumdar S, Malhotra S, Sharma P, Lal S, Cullum J, Lal R. Development of cloning vectors and transformation methods for Amycolatopsis. J Ind Microbiol Biotechnol 2003; 30:195-204. [PMID: 12687493 DOI: 10.1007/s10295-003-0040-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2002] [Accepted: 01/08/2003] [Indexed: 10/23/2022]
Abstract
The genus Amycolatopsis is of industrial importance, as its species are known to produce commercial antibiotics. It belongs to the family Pseudonocardiaceae and has an eventful taxonomic history. Initially strains were identified as Streptomyces, then later as Nocardia. However, based on biochemical, morphological and molecular features, the genus Amycolatopsis, containing seventeen species, was created. The development of molecular genetic techniques for this group has been slow. The scarcity of molecular genetic tools including stable plasmids, antibiotic resistance markers, transposons, reporter genes, cloning vectors, and high efficiency transformation protocols has made progress slow, but efforts in the past decade have led to the development of cloning vectors and transformation methods for these organisms. Some of the cloning vectors have broad host range (pRL series) whereas others have limited host range (pMEA300 and pMEA100). The cloning vector pMEA300 has been completely sequenced, while only the minimal replicon (pA- rep) has been sequenced from pRL plasmids. Direct transformation of mycelia and electroporation are the most widely applicable methods for transforming species of Amycolatopsis. Conjugational transfer from Escherichia coli has been reported only in the species A. japonicum, and gene disruption and replacements using homologous recombination are now possible in some strains.
Collapse
Affiliation(s)
- Gauri Dhingra
- Molecular Biology Laboratory, University of Delhi, Department of Zoology, Delhi 110007, India
| | | | | | | | | | | | | | | | | |
Collapse
|