1
|
Osega CE, Bustos FJ, Arriagada G. From Entry to the Nucleus: How Retroviruses Commute. Annu Rev Virol 2024; 11:89-104. [PMID: 38848600 DOI: 10.1146/annurev-virology-100422-023502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Once inside host cells, retroviruses generate a double-stranded DNA copy of their RNA genomes via reverse transcription inside a viral core, and this viral DNA is subsequently integrated into the genome of the host cell. Before integration can occur, the core must cross the cell cortex, be transported through the cytoplasm, and enter the nucleus. Retroviruses have evolved different mechanisms to accomplish this journey. This review examines the various mechanisms retroviruses, especially HIV-1, have evolved to commute throughout the cell. Retroviruses cross the cell cortex while modulating actin dynamics and use microtubules as roads while connecting with microtubule-associated proteins and motors to reach the nucleus. Although a clearer picture exists for HIV-1 compared with other retroviruses, there is still much to learn about how retroviruses accomplish their commute.
Collapse
Affiliation(s)
- Camila E Osega
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Fernando J Bustos
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| |
Collapse
|
2
|
Prusty S, Sarkar R, Chakraborty A, Roy S. Correlation in Domain Fluctuations Navigates Target Search of a Viral Peptide along RNA. J Phys Chem B 2021; 125:12678-12689. [PMID: 34756044 DOI: 10.1021/acs.jpcb.1c07699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological macromolecules often exhibit correlations in fluctuations involving distinct domains. This study decodes their functional implications in RNA-protein recognition and target-specific binding. The target search of a peptide along RNA in a viral TAR-Tat complex is closely monitored using atomistic simulations, steered molecular dynamics simulations, free energy calculations, and a machine-learning-based clustering technique. An anticorrelated domain fluctuation is identified between the tetraloop and the bulge region in the apo form of TAR RNA that sets a hierarchy in the domain-specific fluctuations at each binding event and that directs the succeeding binding footsteps. Thus, at each binding footstep, the dynamic partner selects an RNA location for binding where it senses a higher fluctuation, which is conventionally reduced upon binding. This event stimulates an alternate domain fluctuation, which then dictates sequential binding footstep/s and thus the search progresses. Our cross-correlation maps show that the fluctuations relay from one domain to another specific domain until the anticorrelation between those interdomain fluctuations sustains. Artificial attenuation of that hierarchical domain fluctuation inhibits specific RNA binding. The binding is completed with the arrival of a few long-lived water molecules that mediate slightly distant RNA-protein sites and finally stabilize the overall complex. The study underscores the functional importance of naturally designed fluctuating RNA motifs (bulge, tetraloop) and their interplay in dictating the directionality of the search in a highly dynamic environment.
Collapse
Affiliation(s)
- Sangram Prusty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Campus Road, Mohanpur, West Bengal 741246, India
| | - Raju Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Campus Road, Mohanpur, West Bengal 741246, India
| | - Amrita Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Campus Road, Mohanpur, West Bengal 741246, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Campus Road, Mohanpur, West Bengal 741246, India
| |
Collapse
|
3
|
Munis AM. Gene Therapy Applications of Non-Human Lentiviral Vectors. Viruses 2020; 12:v12101106. [PMID: 33003635 PMCID: PMC7599719 DOI: 10.3390/v12101106] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Recent commercialization of lentiviral vector (LV)-based cell therapies and successful reports of clinical studies have demonstrated the untapped potential of LVs to treat diseases and benefit patients. LVs hold notable and inherent advantages over other gene transfer agents based on their ability to transduce non-dividing cells, permanently transform target cell genome, and allow stable, long-term transgene expression. LV systems based on non-human lentiviruses are attractive alternatives to conventional HIV-1-based LVs due to their lack of pathogenicity in humans. This article reviews non-human lentiviruses and highlights their unique characteristics regarding virology and molecular biology. The LV systems developed based on these lentiviruses, as well as their successes and shortcomings, are also discussed. As the field of gene therapy is advancing rapidly, the use of LVs uncovers further challenges and possibilities. Advances in virology and an improved understanding of lentiviral biology will aid in the creation of recombinant viral vector variants suitable for translational applications from a variety of lentiviruses.
Collapse
Affiliation(s)
- Altar M Munis
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
4
|
Pietrantoni G, Ibarra-Karmy R, Arriagada G. Microtubule Retrograde Motors and Their Role in Retroviral Transport. Viruses 2020; 12:v12040483. [PMID: 32344581 PMCID: PMC7232228 DOI: 10.3390/v12040483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Following entry into the host cell, retroviruses generate a dsDNA copy of their genomes via reverse transcription, and this viral DNA is subsequently integrated into the chromosomal DNA of the host cell. Before integration can occur, however, retroviral DNA must be transported to the nucleus as part of a ‘preintegration complex’ (PIC). Transporting the PIC through the crowded environment of the cytoplasm is challenging, and retroviruses have evolved different mechanisms to accomplish this feat. Within a eukaryotic cell, microtubules act as the roads, while the microtubule-associated proteins dynein and kinesin are the vehicles that viruses exploit to achieve retrograde and anterograde trafficking. This review will examine the various mechanisms retroviruses have evolved in order to achieve retrograde trafficking, confirming that each retrovirus has its own strategy to functionally subvert microtubule associated proteins.
Collapse
|
5
|
Cavalieri V, Baiamonte E, Lo Iacono M. Non-Primate Lentiviral Vectors and Their Applications in Gene Therapy for Ocular Disorders. Viruses 2018; 10:E316. [PMID: 29890733 PMCID: PMC6024700 DOI: 10.3390/v10060316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
Lentiviruses have a number of molecular features in common, starting with the ability to integrate their genetic material into the genome of non-dividing infected cells. A peculiar property of non-primate lentiviruses consists in their incapability to infect and induce diseases in humans, thus providing the main rationale for deriving biologically safe lentiviral vectors for gene therapy applications. In this review, we first give an overview of non-primate lentiviruses, highlighting their common and distinctive molecular characteristics together with key concepts in the molecular biology of lentiviruses. We next examine the bioengineering strategies leading to the conversion of lentiviruses into recombinant lentiviral vectors, discussing their potential clinical applications in ophthalmological research. Finally, we highlight the invaluable role of animal organisms, including the emerging zebrafish model, in ocular gene therapy based on non-primate lentiviral vectors and in ophthalmology research and vision science in general.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy.
- Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Edificio 18, 90128 Palermo, Italy.
| | - Elena Baiamonte
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy.
| | - Melania Lo Iacono
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy.
| |
Collapse
|
6
|
Passos-Castilho AM, Marchand C, Archambault D. B23/nucleophosmin interacts with bovine immunodeficiency virus Rev protein and facilitates viral replication. Virology 2018; 515:158-164. [DOI: 10.1016/j.virol.2017.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
|
7
|
Abstract
Retroviruses are obligate intracellular parasites of eukaryotic cells. After reverse transcription, the viral DNA contained in the preintegration complex is delivered to the nucleus of the host cell, where it integrates. Before reaching the nucleus, the incoming particle and the preintegration complex must travel throughout the cytoplasm. Likewise, the newly synthesized viral proteins and viral particles must transit the cytoplasm during exit. The cytoplasm is a crowded environment, and simple diffusion is difficult. Therefore, viruses have evolved to utilize the cellular mechanisms of movement through the cytoplasm, where microtubules are the roads, and the ATP-dependent motors dynein and kinesin are the vehicles for retrograde and anterograde trafficking. This review will focus on how different retroviruses (Mazon-Pfizer monkey virus, prototype foamy virus, bovine immunodeficiency virus, human immunodeficiency virus type 1, and murine leukemia virus) have subjugated the microtubule-associated motor proteins for viral replication. Although there have been advances in our understanding of how retroviruses move along microtubules, the strategies are different among them. Thus, a better understanding of the mechanisms used by each retrovirus to functionally subvert microtubule motor proteins will provide important clues in the design of new antiretroviral drugs that can specifically disrupt intracellular viral trafficking.
Collapse
Affiliation(s)
- Gloria Arriagada
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
8
|
Guo HY, Ma YG, Gai YM, Liang ZB, Ma J, Su Y, Zhang QC, Chen QM, Tan J. Bovine HEXIM1 inhibits bovine immunodeficiency virus replication through regulating BTat-mediated transactivation. Vet Res 2013; 44:21. [PMID: 23537346 PMCID: PMC3630055 DOI: 10.1186/1297-9716-44-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/05/2013] [Indexed: 11/11/2022] Open
Abstract
The bovine immunodeficiency virus (BIV) transactivator (BTat) recruits the bovine cyclin T1 (B-cyclin T1) to the LTR to facilitate the transcription of BIV. Here, we demonstrate that bovine hexamethylene bisacetamide (HMBA)-induced protein 1 (BHEXIM1) inhibits BTat-mediated BIV LTR transcription. The results of in vivo and in vitro assays show direct binding of BHEXIM1 to the B-cyclin T1. These results suggest that the repression arises from BHEXIM1-BTat competition for B-cyclin T1, which allows BHEXIM1 to displace BTat from B-cyclin T1. Furthermore, we found that the C-terminal region and the centrally located region of BHEXIM1 are required for BHEXIM1 to associate with B-cyclin T1. Knockdown of BHEXIM1 enhances BIV replication. Taken together, our study provides the first clear evidence that BHEXIM1 is involved in BIV replication through regulating BTat-mediated transactivation.
Collapse
Affiliation(s)
- Hong-yan Guo
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Molecular evidence for bovine immunodeficiency virus infection in Iranian sheep and cattle population. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s00580-010-1048-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Liu C, Li X, Yao X, Kong X, Qiao W, Geng Y. Bovine ISG15: an antiviral and inducible protein in BIV infected fetal bovine lung cells. Virol J 2010; 7:134. [PMID: 20569475 PMCID: PMC2900246 DOI: 10.1186/1743-422x-7-134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 06/23/2010] [Indexed: 12/22/2022] Open
Abstract
Bovine ISG15 (bISG15) is an interferon inducible ubiquitin-like protein that is responsible for the establishment of early pregnancy in ruminant, understanding the properties of bISG15 capable of being inducible in fetal bovine lung (FBL) cells upon infection of bovine immunodeficiency virus (BIV) is of significant importance. In this study, we investigated the expression of bISG15 in poly I:C treated FBL cells. The increased expression of bISG15 was observed, and the inhibition of BIV replication was also detected in FBL cells. Elimination of bISG15 expression by small interfering RNA reversed the bISG15 mediated inhibition of BIV replication. These findings demonstrate that bISG15 plays an important role in inhibition of the BIV replication in FBL cells. Furthermore, real-time PCR and western blot assay revealed that bISG15's expression can also be induced in BIV infected FBL cells. Taken together, bISG15 is an antiviral and inducible protein in BIV infected FBL cells.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Function Genomics (Tianjin), College of Life Sciences, Nankai University; N0, 94, Rd, Weijin, Nankai District, Box, 300071, Tianjin, PR China
| | | | | | | | | | | |
Collapse
|
11
|
A quantitative assay for measuring of bovine immunodeficiency virus using a luciferase-based indicator cell line. Virol Sin 2010; 25:137-44. [PMID: 20960311 DOI: 10.1007/s12250-010-3109-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/23/2010] [Indexed: 10/19/2022] Open
Abstract
In order to quantitate the bovine immunodeficiency virus (BIV) infection in vitro, a BIV indicator cell line (BIVL) was established by transfecting baby hamster kidney cells with reporter plasmids containing the firefly luciferase gene driven by a BIV long terminal repeat promoter. The BIV activates promoter activity of the LTR to express luciferase upon infection. BIV infection could therefore by quantified by detection of luciferase activity. Compared to standard assays used to detect BIV infection, the BIVL-based assay is 10 times more sensitive than the the CPE-based assay, and has similar sensitivity with the viral capsid protein Western blot assay. BIV indicator cell line could detect BIV infection specifically. Luciferase activity of BIV infected BIVL cells showed a time dependent manner, and 60 h post infection is the optimal time to detect BIV infection. Luciferase activity of BIVL cells correlates with the BIV capsid protein expression. Moreover, a linear relationship was found between MOI and the activated intensity of luciferase expression. In brief, the BIV indicator cell line is an easy, robust and quantitive method for monitoring BIV infection.
Collapse
|
12
|
Su Y, Qiao W, Guo T, Tan J, Li Z, Chen Y, Li X, Li Y, Zhou J, Chen Q. Microtubule-dependent retrograde transport of bovine immunodeficiency virus. Cell Microbiol 2010; 12:1098-107. [PMID: 20148896 DOI: 10.1111/j.1462-5822.2010.01453.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Microtubules are essential components of the cytoskeleton that participate in a variety of cellular processes such as cell division and migration. In addition, there is a growing body of evidence implicating a role for microtubules in intracellular viral transport. In this study, we found that pharmacological disruption of microtubules remarkably blocked bovine immunodeficiency virus (BIV) movement from the cell periphery to the perinuclear region, a process known as retrograde transport. A similar effect was observed by inhibiting function of the microtubule-associated motor protein dynein. By yeast two-hybrid assay, we found that the capsid protein (CA) of BIV interacted with the dynein light-chain component LC8. Immunoprecipitation and GST-pulldown assays further demonstrated an interaction between CA and LC8 in mammalian cells. In addition, our data revealed LC8 as a linker between BIV particles and microtubules. Retrograde transport of BIV was significantly inhibited by knockdown of LC8 expression. Our findings present the first evidence that incoming BIV particles employ host microtubule/dynein machinery for transport towards the perinuclear region. In addition, our data indicate that the LC8-CA interaction is a potential target for the design of antiviral strategies.
Collapse
Affiliation(s)
- Yang Su
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yao X, Su Y, Liu C, Tan J, Liu L, Geng YQ, Qiao WT. Establishment of an indicator cell line for monitoring bovine immunodeficiency virus infection and inhibitor susceptibility. J Virol Methods 2010; 163:25-30. [DOI: 10.1016/j.jviromet.2009.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/15/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
|
14
|
The bovine immunodeficiency virus rev protein: identification of a novel lentiviral bipartite nuclear localization signal harboring an atypical spacer sequence. J Virol 2009; 83:12842-53. [PMID: 19828621 DOI: 10.1128/jvi.01613-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bovine immunodeficiency virus (BIV) Rev protein (186 amino acids [aa] in length) is involved in the nuclear exportation of partially spliced and unspliced viral RNAs. Previous studies have shown that BIV Rev localizes in the nucleus and nucleolus of infected cells. Here we report the characterization of the nuclear/nucleolar localization signals (NLS/NoLS) of this protein. Through transfection of a series of deletion mutants of BIV Rev fused to enhanced green fluorescent protein and fluorescence microscopy analyses, we were able to map the NLS region between aa 71 and 110 of the protein. Remarkably, by conducting alanine substitution of basic residues within the aa 71 to 110 sequence, we demonstrated that the BIV Rev NLS is bipartite, maps to aa 71 to 74 and 95 to 101, and is predominantly composed of arginine residues. This is the first report of a bipartite Rev (or Rev-like) NLS in a lentivirus/retrovirus. Moreover, this NLS is atypical, as the length of the sequence between the motifs composing the bipartite NLS, e.g., the spacer sequence, is 20 aa. Further mutagenesis experiments also identified the NoLS region of BIV Rev. It localizes mainly within the NLS spacer sequence. In addition, the BIV Rev NoLS sequence differs from the consensus sequence reported for other viral and cellular nucleolar proteins. In summary, we conclude that the nucleolar and nuclear localizations of BIV Rev are mediated via novel NLS and NoLS motifs.
Collapse
|
15
|
Cojocariu M, St-Louis MC, Archambault D. Bovine immunodeficiency virus: identification of a long terminal repeat sequence with enhanced promoter activity. Arch Virol 2009; 154:1163-7. [PMID: 19547911 DOI: 10.1007/s00705-009-0411-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 05/25/2009] [Indexed: 11/30/2022]
Abstract
We previously identified a new bovine immunodeficiency virus (BIV) trans-activator factor of transcription (Tat236) that was derived from a variant of BIV. Here, we report a new BIV long terminal repeat (LTR) sequence (LTRn) that was obtained by PCR from the DNA of cells infected with the BIV variant mentioned above. Sequence analysis indicated that the LTRn U3 region harbors three nucleic acid mutations at residue positions -194, -135 and -114 when compared to the original (wild-type) LTR sequence. Reporter gene assays indicated that LTRn promotes basal and Tat-mediated transactivation activity to levels significantly higher than those obtained with the wild-type LTR. Restoration experiments to the wild-type genotype indicated that both the -135 and -114 nucleic acid substitutions were responsible for the enhanced promoter activity of BIV LTRn.
Collapse
Affiliation(s)
- M Cojocariu
- Department of Biological Sciences, Université du Québec à Montréal, Succursale Centre-Ville, Canada
| | | | | |
Collapse
|
16
|
ISG15 expression in response to double-stranded RNA or LPS in cultured Fetal bovine lung (FBL) cells. Vet Res Commun 2009; 33:723-33. [PMID: 19367472 DOI: 10.1007/s11259-009-9221-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 04/02/2009] [Indexed: 12/30/2022]
Abstract
Fetal bovine lung (FBL) cells are used in the culture of viruses which infect cattle and ISG15 plays a role in innate immunity against viral infections. However, whether the expression of ISG15 gene can be induced in FBL cells is still unknown. In this work, the expression of ISG15 in cultured FBL cells was detected after stimulated with poly I:C or LPS. Real-time PCR analyses revealed that the transcript of ISG15 can be induced by poly I:C or LPS. The increased expression of free ISG15 was confirmed via Western blotting. Furthermore, immunofluorescence assays demonstrated that IRF-3 was translocated from the cytoplasm to the nucleus in the FBL cells treated with poly I:C. Chromatin immunoprecipitation assays showed that IRF-3 can bind to the promoter of the bISG15 gene. To demonstrate IRF-3 can promote the expression of bISG15, we establish a luciferase-reporter system of bovine ISG15 gene in 293 T cells. The luciferase assay showed that the over-expression of bovine IRF-3 could activate the promoter of bISG15 gene. Taken together, these results suggest that the expression of bISG15 can be induced in FBL cells stimulated with poly I:C or LPS, and IRF-3 may play a role in inducing the expression of ISG15 in FBL cells.
Collapse
|
17
|
Molecular basis of the internalization of bovine immunodeficiency virus Tat protein. Virus Genes 2007; 36:85-94. [DOI: 10.1007/s11262-007-0137-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 07/02/2007] [Indexed: 10/22/2022]
|
18
|
Xuan C, Qiao W, Li J, Peng G, Liu M, Chen Q, Zhou J, Geng Y. BTat, a trans-acting regulatory protein, contributes to bovine immunodeficiency virus-induced apoptosis. Cell Microbiol 2007; 10:31-40. [PMID: 17645750 DOI: 10.1111/j.1462-5822.2007.01011.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bovine immunodeficiency virus (BIV) is a member of the lentivirus subfamily of retroviruses highly related to human immunodeficiency virus in morphologic, antigenic and genomic features. BIV is known to induce chronic pathological changes in infected hosts, which are often associated with the development of immune-mediated lesions. However, the molecular events underlying the cytopathic effect of BIV remain poorly understood. In this study, BIV was found to induce apoptotic cell death, and a small trans-acting regulatory protein encoded by BIV, BTat, was found to participate in the pro-apoptotic action of BIV. Introduction of exogenous BTat to cells triggered apoptosis dramatically, as revealed by assays such as terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling, nuclear morphology analysis, flow cytometry, and cleavages of caspases and poly(ADP-ribose)polymerase. Interestingly, the pro-apoptotic effect of BTat was found to be mediated through its interaction with cellular microtubules and its interference with microtubule dynamics. These results provide the first evidence that induction of apoptosis may contribute to the cytopathic effect of BIV. In addition, these results uncover a novel role for BTat in regulating microtubule dynamics in addition to its conventional role in regulating gene transcription.
Collapse
Affiliation(s)
- Chenghao Xuan
- Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | |
Collapse
|