1
|
Ming M, Yuan S, Fu H, Li X, Zhang H, Liu T, Bu F, Wu X. Influence of biotic and abiotic factors on flea species population dynamics on Lasiopodomys brandtii. Int J Parasitol Parasites Wildl 2023; 21:185-191. [PMID: 37575662 PMCID: PMC10422677 DOI: 10.1016/j.ijppaw.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 08/15/2023]
Abstract
Brandt's Vole (Lasiopodomys brandtii) is one of the most abundant rodent species in the grasslands of Inner Mongolia, China, and one of the main carriers of Yersinia pestis, the plague bacterium. There have been several instances of plague transmission among L. brandtii, and all of their dominant flea species are known carriers of plague. Little work has been done to understand the regulation of flea abundance on L. brandtii by biotic and abiotic factors. Here, we examine the impacts of host and climate variation on flea abundance on L. brandtii in May, July, and September of 2021 in the East Ujumqin Banner, Xilinhot City, Inner Mongolia Autonomous Region. We arrived at the following conclusions: 1) There were 8 flea species representing 2 families and 5 genera collected from L. brandtii, and Frontopsylla luculenta, Neopsylla pleskei orientalis, and Amphipsylla primaris mitis were most common. 2) Host body weight, host age, season, temperature, and humidity are key factors influencing flea abundance on L. brandtii. 3) Flea species vary in their respective responses to factors.
Collapse
Affiliation(s)
- Ming Ming
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University. Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia. Hohhot, China
- Key Laboratory of Grassland Resources of the Ministry of Education. Hohhot, China
| | - Shuai Yuan
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University. Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia. Hohhot, China
- Key Laboratory of Grassland Resources of the Ministry of Education. Hohhot, China
| | - Heping Fu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University. Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia. Hohhot, China
- Key Laboratory of Grassland Resources of the Ministry of Education. Hohhot, China
| | - Xin Li
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University. Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia. Hohhot, China
- Key Laboratory of Grassland Resources of the Ministry of Education. Hohhot, China
| | - Haoting Zhang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University. Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia. Hohhot, China
- Key Laboratory of Grassland Resources of the Ministry of Education. Hohhot, China
| | - Tao Liu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University. Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia. Hohhot, China
- Key Laboratory of Grassland Resources of the Ministry of Education. Hohhot, China
| | - Fan Bu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University. Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia. Hohhot, China
- Key Laboratory of Grassland Resources of the Ministry of Education. Hohhot, China
| | - Xiaodong Wu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University. Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia. Hohhot, China
- Key Laboratory of Grassland Resources of the Ministry of Education. Hohhot, China
| |
Collapse
|
2
|
Xenopsylla cheopis (rat flea). Trends Parasitol 2022; 38:607-608. [DOI: 10.1016/j.pt.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
|
3
|
Backus LH, López Pérez AM, Foley JE. Effect of Temperature on Host Preference in Two Lineages of the Brown Dog Tick, Rhipicephalus sanguineus. Am J Trop Med Hyg 2021; 104:2305-2311. [PMID: 33819179 DOI: 10.4269/ajtmh.20-1376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/28/2021] [Indexed: 11/07/2022] Open
Abstract
Rhipicephalus sanguineus is a species complex of ticks that vector disease worldwide. Feeding primarily on dogs, members of the complex also feed incidentally on humans, potentially transmitting disease agents such as Rickettsia rickettsii, R. conorii, and Ehrlichia species. There are two genetic Rh. sanguineus lineages in North America, designated as the temperate and tropical lineages, which had occurred in discrete locations, although there is now range overlap in parts of California and Arizona. Rh. sanguineus in Europe are reportedly more aggressive toward humans during hot weather, increasing the risk of pathogen transmission to humans. The aim of this study was to assess the impact of hot weather on choice between humans and dog hosts among tropical and temperate lineage Rh. sanguineus individuals. Ticks in a two-choice olfactometer migrated toward a dog or human in trials at room (23.5°C) or high temperature (38°C). At 38°C, 2.5 times more tropical lineage adults chose humans compared with room temperature, whereas temperate lineage adults demonstrated a 66% reduction in preference for dogs and a slight increase in preference for humans. Fewer nymphs chose either host at 38°C than at room temperature in both lineages. These results demonstrate that risk of disease transmission to humans may be increased during periods of hot weather, where either lineage is present, and that hot weather events associated with climatic change may result in more frequent rickettsial disease outbreaks.
Collapse
|
4
|
Harimalala M, Telfer S, Delatte H, Watts PC, Miarinjara A, Ramihangihajason TR, Rahelinirina S, Rajerison M, Boyer S. Genetic structure and gene flow of the flea Xenopsylla cheopis in Madagascar and Mayotte. Parasit Vectors 2017; 10:347. [PMID: 28728588 PMCID: PMC5520349 DOI: 10.1186/s13071-017-2290-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/13/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The flea Xenopsylla cheopis (Siphonaptera: Pulicidae) is a vector of plague. Despite this insect's medical importance, especially in Madagascar where plague is endemic, little is known about the organization of its natural populations. We undertook population genetic analyses (i) to determine the spatial genetic structure of X. cheopis in Madagascar and (ii) to determine the potential risk of plague introduction in the neighboring island of Mayotte. RESULTS We genotyped 205 fleas from 12 sites using nine microsatellite markers. Madagascan populations of X. cheopis differed, with the mean number of alleles per locus per population ranging from 1.78 to 4.44 and with moderate to high levels of genetic differentiation between populations. Three distinct genetic clusters were identified, with different geographical distributions but with some apparent gene flow between both islands and within Malagasy regions. The approximate Bayesian computation (ABC) used to test the predominant direction of flea dispersal implied a recent population introduction from Mayotte to Madagascar, which was estimated to have occurred between 1993 and 2012. The impact of this flea introduction in terms of plague transmission in Madagascar is unclear, but the low level of flea exchange between the two islands seems to keep Mayotte free of plague for now. CONCLUSION This study highlights the occurrence of genetic structure among populations of the flea vector of plague, X. cheopis, in Madagascar and suggests that a flea population from Mayotte has been introduced to Madagascar recently. As plague has not been reported in Mayotte, this introduction is unlikely to present a major concern for plague transmission. Nonetheless, evidence of connectivity among flea populations in the two islands indicates a possibility for dispersal by fleas in the opposite direction and thus a risk of plague introduction to Mayotte.
Collapse
Affiliation(s)
- Mireille Harimalala
- Medical Entomology Unit, Institut Pasteur of Madagascar, Ambatofotsikely, PO box 1274, 101 Antananarivo, Madagascar
| | - Sandra Telfer
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ UK
| | - Hélène Delatte
- UMR PVBMT, CIRAD, 7 Chemin de l’IRAT, Saint Pierre, La Réunion France
| | - Phillip C. Watts
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland
| | - Adélaïde Miarinjara
- Medical Entomology Unit, Institut Pasteur of Madagascar, Ambatofotsikely, PO box 1274, 101 Antananarivo, Madagascar
| | - Tojo Rindra Ramihangihajason
- Medical Entomology Unit, Institut Pasteur of Madagascar, Ambatofotsikely, PO box 1274, 101 Antananarivo, Madagascar
| | | | - Minoarisoa Rajerison
- Plague Unit, Institut Pasteur of Madagascar, Ambatofotsikely, PO box 1274, 101 Antananarivo, Madagascar
| | - Sébastien Boyer
- Medical Entomology Unit, Institut Pasteur of Madagascar, Ambatofotsikely, PO box 1274, 101 Antananarivo, Madagascar
| |
Collapse
|
5
|
Rajonhson DM, Miarinjara A, Rahelinirina S, Rajerison M, Boyer S. Effectiveness of Fipronil as a Systemic Control Agent Against Xenopsylla cheopis (Siphonaptera: Pulicidae) in Madagascar. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:411-417. [PMID: 28122816 DOI: 10.1093/jme/tjw200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Fipronil was evaluated as a systemic control agent for the rat flea Xenopsylla cheopis (Rothschild), the main vector of Yersinia pestis (Yersin), the causative agent of plague, in Madagascar. The effectiveness of fipronil as a systemic control agent against X. cheopis was assessed by determining the toxicity values of the "Lethal Dose 50" (LD50). Two techniques were used to evaluate the systemic action of the insecticide on the vector: 1) an artificial feeding device filled with blood-fipronil mixture from which X. cheopis was fed and 2) rodent hosts, Rattus norvegicus (Berkenhout) and Rattus rattus (L.), which fed on fipronil-treated bait. As a standardized control method, the susceptibility of X. cheopis to fipronil was evaluated by exposure to impregnated paper within World Health Organization (WHO) insecticide test protocol to compare its effect to the systemic activity of the studied insecticide. Results showed that when administered in a systemic way, fipronil appears to be more effective: the toxicity level was evaluated to be ninefold higher compared with the WHO test. Compared with other methods, which require indiscriminate dusting of rodent burrows and human dwellings, fipronil applied in a systemic way enables the direct targeting of the plague vector. Thus, this method appears to be a superior alternative to fipronil-dusting for the control of the main plague vector in Madagascar. However, subsequent tests in the field are necessary to confirm the suitability of fipronil administration in a systemic way on large scales.
Collapse
Affiliation(s)
- D M Rajonhson
- Unité Entomologie Médicale, Institut Pasteur de Madagascar, BP 1274 Ambatofotsikely Antananarivo101, Madagascar (; ; )
- Université d'Antananarivo, BP 906 Antananarivo, Madagascar
| | - A Miarinjara
- Unité Entomologie Médicale, Institut Pasteur de Madagascar, BP 1274 Ambatofotsikely Antananarivo101, Madagascar (; ; )
- Université d'Antananarivo, BP 906 Antananarivo, Madagascar
- Ecole Doctorale Sciences de la Vie et de l'Environnement, Université d'Antananarivo, BP 906 Antananarivo, Madagascar
| | - S Rahelinirina
- Unité Peste, Institut Pasteur de Madagascar, BP 1274 Ambatofotsikely Antananarivo 101, Madagascar (; )
| | - M Rajerison
- Unité Peste, Institut Pasteur de Madagascar, BP 1274 Ambatofotsikely Antananarivo 101, Madagascar (; )
| | - S Boyer
- Unité Entomologie Médicale, Institut Pasteur de Madagascar, BP 1274 Ambatofotsikely Antananarivo101, Madagascar (; ; )
| |
Collapse
|
6
|
Effects of parasite pressure on parasite mortality and reproductive output in a rodent-flea system: inferring host defense trade-offs. Parasitol Res 2016; 115:3337-44. [DOI: 10.1007/s00436-016-5093-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
|
7
|
Khokhlova IS, Serobyan V, Degen AA, Krasnov BR. Discrimination of host sex by a haematophagous ectoparasite. Anim Behav 2011. [DOI: 10.1016/j.anbehav.2010.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Sex ratio in flea infrapopulations: number of fleas, host gender and host age do not have an effect. Parasitology 2008; 135:1133-41. [PMID: 18561869 DOI: 10.1017/s0031182008004551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study set out to determine whether the sex ratio of fleas collected from host bodies is a reliable indicator of sex ratio in the entire flea population. To answer this question, previously published data on 18 flea species was used and it was tested to see whether a correlation exists between the sex ratio of fleas collected from host bodies and the sex ratio of fleas collected from host burrows. Across species, the female:male ratio of fleas on hosts correlated strongly with the female:male ratio of fleas in their burrows, with the slope of the regression overlapping 1. Controlling for flea phylogeny by independent contrasts produced similar results. It was also ascertained whether a host individual is a proportional random sampler of male and female fleas and whether the sex ratio in flea infrapopulations depends on the size of infrapopulations and on the gender and age of a host. Using field data, the sex ratio in infrapopulations of 7 flea species parasitic on 4 rodent species was analysed. Populations of 3 species (Nosopsyllus iranus, Parapulex chephrenis and Xenopsylla conformis) were significantly female-biased, whereas male bias was found in 1 species (Synosternus cleopatrae). In general, the sex ratio of fleas collected from an individual rodent did not differ significantly from the sex ratio in the entire flea population. Neither host gender, and age nor number of fleas co-occurring on a host affected (a) the sex ratio in flea infrapopulations and (b) the probability of an infrapopulation to be either female- or male-biased.
Collapse
|