1
|
Bafor EE, Kalu CH, Omoruyi O, Elvis-Offiah UB, Edrada-Ebel R. Thyme ( Thymus vulgaris [Lamiaceae]) Leaves Inhibit Contraction of the Nonpregnant Mouse Uterus. J Med Food 2020; 24:541-550. [PMID: 32758061 DOI: 10.1089/jmf.2020.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dysmenorrhea is painful menstrual periods, which affects 25% of women within reproductive age and has a prevalence of 67.2-90.0%. Current treatment has several adverse effects and can be ineffective once the pain is initiated. Thymus vulgaris traditionally used for pain management was investigated in this study for its activity on uterine contraction in the nonpregnant uterus, as a parameter for dysmenorrhea. The dried leaves of T. vulgaris were macerated in water, and the resulting aqueous extract was investigated on the isolated mouse uterus. Parameters investigated included spontaneous contractions, oxytocin-induced contractions, and high potassium chloride (KCl; 80 mM)-induced tonic contractions. Mass spectrometric analysis of the thyme extract was also performed using liquid chromatography-high-resolution Fourier Transform mass spectrometry. Thyme extract inhibited the amplitude and frequency of spontaneous and oxytocin-induced uterine contractions. It also inhibited KCl-induced tonic contractions. The activities observed suggest that T. vulgaris inhibits uterine contractions through blockade of extracellular voltage-gated calcium channels. Secondary metabolites detected included compounds belonging to chlorogenic phytochemical class and flavonoids, which are known to have activities on extracellular calcium blockade. This study has shown that aqueous T. vulgaris extract, also known as thyme, inhibits contractions of the nonpregnant uterus and can be a lead plant in the drug discovery process for the management of dysmenorrhea.
Collapse
Affiliation(s)
- Enitome E Bafor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
| | - Chioma H Kalu
- Department of Science and Laboratory Technology, Faculty of Science, University of Benin, Benin City, Nigeria
| | - Osemelomen Omoruyi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
| | - Uloma B Elvis-Offiah
- Department of Science and Laboratory Technology, Faculty of Science, University of Benin, Benin City, Nigeria
| | - RuAngelie Edrada-Ebel
- Department of Pharmaceutical Sciences, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
2
|
Microwave-assisted extraction of herbacetin diglucoside from flax (Linum usitatissimum L.) seed cakes and its quantification using an RP-HPLC-UV system. Molecules 2014; 19:3025-37. [PMID: 24619301 PMCID: PMC6270660 DOI: 10.3390/molecules19033025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 11/20/2022] Open
Abstract
Flax (Linum usitatissimum L.) seeds are widely used for oil extraction and the cold-pressed flaxseed (or linseed) cakes obtained during this process constitute a valuable by-product. The flavonol herbacetin diglucoside (HDG) has been previously reported as a constituent of the flaxseed lignan macromolecule linked through ester bonds to the linker molecule hydroxymethylglutaric acid. In this context, the development and validation of a new approach using microwave-assisted extraction (MAE) of HDG from flaxseed cakes followed by quantification with a reverse-phase HPLC system with UV detection was purposed. The experimental parameters affecting the HDG extraction yield, such as microwave power, extraction time and sodium hydroxide concentration, from the lignan macromolecule were optimized. A maximum HDG concentration of 5.76 mg/g DW in flaxseed cakes was measured following an irradiation time of 6 min, for a microwave power of 150 W using a direct extraction in 0.1 M NaOH in 70% (v/v) aqueous methanol. The optimized method was proven to be rapid and reliable in terms of precision, repeatability, stability and accuracy for the extraction of HDG. Comparison with a conventional extraction method demonstrated that MAE is more effective and less time-consuming.
Collapse
|
3
|
Sun Y, Zhu R, Ye H, Tang K, Zhao J, Chen Y, Liu Q, Cao Z. Towards a bioinformatics analysis of anti-Alzheimer's herbal medicines from a target network perspective. Brief Bioinform 2012; 14:327-43. [DOI: 10.1093/bib/bbs025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
4
|
Jacquemin G, Shirley S, Micheau O. Combining naturally occurring polyphenols with TNF-related apoptosis-inducing ligand: a promising approach to kill resistant cancer cells? Cell Mol Life Sci 2010; 67:3115-30. [PMID: 20508968 PMCID: PMC11115850 DOI: 10.1007/s00018-010-0407-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/16/2010] [Accepted: 05/11/2010] [Indexed: 12/13/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) and its receptors are attractive targets for anticancer therapy owing to their ability to trigger apoptosis selectively in cancer cells but not in normal cells. To date, many combinatorial strategies, such as chemotherapy or radiotherapy, have given encouraging results for overcoming TRAIL resistance in preclinical models. In this review, we provide an overview of the molecular mechanisms underlying sensitization to TRAIL-induced apoptosis by polyphenols. These naturally occurring compounds can restore tumor cell sensitivity to TRAIL-induced cell death with no apparent toxicity towards normal cells. Both extrinsic and intrinsic pathways can be modulated by polyphenols, the activation of which largely depends on the cell type, the particular polyphenolic compound, and the conditions of treatment. The large variety of polyphenol cellular targets could prove useful in circumventing TRAIL resistance. The relevance of these combined treatments for cancer therapy is discussed in the light of recent preclinical studies.
Collapse
|
5
|
Grepl M, Roithová J, Hradil P, Lemr K. Ionization and fragmentation of monochloro-isomers of 3-hydroxy-2-phenyl-4(1H)-quinolinone. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:2905-2914. [PMID: 18767183 DOI: 10.1002/rcm.3690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Electron ionization (EI), methane chemical ionization (CI), and collision-induced dissociation (CID) mass spectra of complete series of positional monochloro-isomers of 3-hydroxy-2-phenyl-4(1H)-quinolinone are evaluated and discussed. It is shown that in the CI experiments, in addition to the protonated precursor molecules, odd-electron molecular ions are formed and this affects the appearance of the CID spectra. The influence of different direct probes and other experimental parameters such as the pressure of the reagent gas, isolation width, or collision energy was studied. EI, CI and CID spectra of the positional isomers show essentially the same fragmentation pathways but comparisons of the relative signal intensities of various product ions reveal some positional effects. Different isomers are also distinguished. The compounds can be divided into two groups using diagnostic ions (chloro substitution of the quinolinone moiety or the phenyl ring) or identified using a created spectral database. It was demonstrated that the reproducibility of the CID spectra is fully satisfactory for isomer identification, and that the created database can be applied for comparison of spectra measured over an extended time period (1 month) or spectra obtained during the direct analysis of a reaction mixture extract. Explanation of the fragmentation of the isomers is supported by exploratory density functional theory (DFT) calculations, e.g. rationalization of the relatively higher importance of the M+.-H.-Cl.-CO fragmentation pathway during EI than during CID, and vice versa for the pathway M+.-Cl.-CO.
Collapse
Affiliation(s)
- Martin Grepl
- Farmak a.s., Na Vlcinci 3, 771 17 Olomouc, Czech Republic
| | | | | | | |
Collapse
|
6
|
Kim DS, Ha KC, Kwon DY, Kim MS, Kim HR, Chae SW, Chae HJ. Kaempferol protects ischemia/reperfusion-induced cardiac damage through the regulation of endoplasmic reticulum stress. Immunopharmacol Immunotoxicol 2008; 30:257-70. [PMID: 18569083 DOI: 10.1080/08923970701812530] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study examined whether or not the ER stress and Bcl-2 proteins are linked to the protective effect of kaempferol, a phytoestrogen, on ischemia-reperfusion (I/R)-induced cardiac damage. In order to determine if kaempferol modifies the I/R-induced response in H9c2 cardiac muscle cells, the cells were exposed to kaempferol followed by ischemia 12h/reperfusion 4h. kaempferol had a protective effect on the apoptosis induced by I/R in the cardiac muscle cells. The Kaempferol treatment significantly increased the expression level of the anti-apoptotic protein, Bcl-2, but decreased the level of the pro-apoptotic protein, bax. Kaempferol down-regulated the expressions of the endoplasmic reticulum (ER) stress proteins, GRP78, ATF-6alpha, XBP-2, IRE1-alpha, phosphor-eIF-2alpha and CHOP. In ex vivo-Langendorff experiment, the kaempferol treatment regulated the expression of ER stress proteins-CHOP and GRP78. The kaempferol also improved the post-ischemic LVEDP and LVDP significantly after 20, 30, 40 and 50 min of reperfusion compared with the untreated control hearts, which shows that kaempferol offers protection against I/R-associated cardiac dysfunction.
Collapse
Affiliation(s)
- Do-Sung Kim
- Department of Pharmacology and Clinical Trial Center, Medical School, Chonbuk National University, Jeonju, Chonbuk, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Yoshida T, Konishi M, Horinaka M, Yasuda T, Goda AE, Taniguchi H, Yano K, Wakada M, Sakai T. Kaempferol sensitizes colon cancer cells to TRAIL-induced apoptosis. Biochem Biophys Res Commun 2008; 375:129-33. [PMID: 18680719 DOI: 10.1016/j.bbrc.2008.07.131] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 07/26/2008] [Indexed: 11/27/2022]
Abstract
Kaempferol is a natural compound contained in edible plants, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent. Here, we show for the first time that the combined treatment with kaempferol and TRAIL drastically induced apoptosis in human colon cancer SW480 cells, compared to single treatments. Kaempferol markedly up-regulated TRAIL receptors, DR5 and DR4. DR5 but not DR4 siRNA efficiently blocked apoptosis induced by the co-treatment with kaempferol and TRAIL, indicating that DR5 up-regulation by kaempferol helps to enhance TRAIL actions. Moreover, we examined the combined effect on normal human cells. The co-treatment induced no apoptosis in normal human peripheral blood mononuclear cells and little apoptosis in normal human hepatocytes. These results suggest that kaempferol is useful for TRAIL-based treatments for cancer.
Collapse
Affiliation(s)
- Tatsushi Yoshida
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wong SP, Li J, Shen P, Gong Y, Yap SP, Yong EL. Ultrasensitive Cell-Based Bioassay for the Measurement of Global Estrogenic Activity of Flavonoid Mixtures Revealing Additive, Restrictive, and Enhanced Actions in Binary and Higher Order Combinations. Assay Drug Dev Technol 2007; 5:355-62. [PMID: 17638535 DOI: 10.1089/adt.2007.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Flavonoids present in food, botanicals, and body fluids occur as complex mixtures, and data on their combinatorial estrogenic effects are sparse. Human cell lines that permanently express estrogen receptor (ER) alpha and ERbeta proteins were developed for the measurement of the global estrogenicity of flavonoids in such complex mixtures. The presence of estrogenic ligands, known and unknown, in these mixtures can be detected by activation of an ER-driven luciferase reporter gene. We also examined the effect of hydroxylation on the estrogenic activities of four common flavonoids-apigenin, kaempferol, luteolin, and quercetin, alone and in combination. An inverse relationship was observed between the number of hydroxyl groups in flavonoids and ERalpha bioactivity. When submaximal doses of apigenin, luteolin, kaempferol, genistein, and estradiol were combined in binary and higher order mixtures, the experimental estrogenic effects matched those obtained by summing effects extrapolated from dose-response curves of individual compounds. The estrogenic activities of mixtures containing quercetin were observed to deviate from additivity, suggesting that it was a partial agonist/antagonist. Our assay reveals superagonistic, additive, and antagonistic ERalpha or ERbeta actions of flavonoids and adds to our understanding of the estrogenic effects of phytoestrogens in complex mixtures.
Collapse
Affiliation(s)
- Shih Peng Wong
- Department of Obstetrics and Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
9
|
Chodon D, Ramamurty N, Sakthisekaran D. Preliminary studies on induction of apoptosis by genistein on HepG2 cell line. Toxicol In Vitro 2007; 21:887-91. [PMID: 17391909 DOI: 10.1016/j.tiv.2007.01.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 12/06/2006] [Accepted: 01/22/2007] [Indexed: 11/28/2022]
Abstract
Consumption of soy products has been linked to lower the incidence of number of cancers. Genistein, one of the principal soy isoflavones, has been shown to inhibit the growth of a number of tumor cell lines in vitro. In this study, we investigate the effects of genistein on cell growth and apoptosis in human hepatocellular carcinoma HepG2 cell by looking for the formation of nuclear apoptotic bodies and DNA ladder formation. Additionally, flow cytometry analysis with propidium iodide staining has been conducted to detect the apoptotic cells. We found inhibition of cell growth and apoptotic nuclei, DNA fragmentation and increased apoptotic cells after treatment with genistein, indicating apoptotic cell deaths. From these results we observed that genistein inhibits the growth of HepG2 cells and induce apoptosis, however, further definitive studies are needed. These results may support the potentially effective chemopreventive and/or chemotherapeutic of genistein against liver cancer.
Collapse
Affiliation(s)
- Dechen Chodon
- Department of Medical Biochemistry, Dr. ALM. Post Graduate Institute of Basic Medical Science, University of Madras, Taramani Campus, Chennai 600 113, India.
| | | | | |
Collapse
|
10
|
Fiorani M, Accorsi A, Blasa M, Diamantini G, Piatti E. Flavonoids from italian multifloral honeys reduce the extracellular ferricyanide in human red blood cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:8328-34. [PMID: 17032047 DOI: 10.1021/jf061602q] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this study we investigated some biological properties of flavonoids recovered in the aqueous (AqE) and ether (EtE) extracts from four Italian multifloral honeys. In particular, a cell-free assay was employed to detect direct reduction of ferricyanide, whereas an assay using intact human erythrocytes was used to measure the ability to donate electrons to a trans-plasma membrane oxidoreductase. It was found that the AqE displays greater "in vitro" ferricyanide-reducing activity than the EtE but, unlike the latter, is virtually ineffective in the cell-based assay. Uptake studies employing high-performance liquid chromatography/mass spectrometry (HPLC/MS) showed that the different results were explained by the inability of AqE components to cross the erythrocyte plasma membrane and by the excellent uptake of EtE flavonoids, which, once within the cell, donate electrons to the membrane oxidoreductase to efficiently reduce extracellular oxidants. The latter property appears to depend on the content of ether-soluble flavonoids in the starting honeys.
Collapse
Affiliation(s)
- Mara Fiorani
- Istituto di Chimica Biologica Giorgio Fornaini, Via Saffi 2, Università degli Studi di Urbino Carlo Bo, 61029 Urbino (PU), Italy.
| | | | | | | | | |
Collapse
|
11
|
Oh SM, Kim YP, Chung KH. Biphasic effects of kaempferol on the estrogenicity in human breast cancer cells. Arch Pharm Res 2006; 29:354-62. [PMID: 16756079 DOI: 10.1007/bf02968584] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dietary flavonoids have attracted a great deal of attention as agents for preventing estrogen-related diseases, such as postmenopausal symptoms, and for reducing the risk of estrogen-dependent cancer. Kaempferol is one of the most commonly found dietary phytoestrogen. The aim of this study was to investigate the estrogenic and/or antiestrogenic effect of kaempferol, which can confirm its potency as a preventive agent against estrogen-related diseases. Kaempferol has both estrogenic and antiestrogenic activity, which are biphasic response on estrogen receptor. The estrogenic activity of kaempferol induced via ER-mediated pathway depending on E2 concentration (< or = 10(-12) M). Kaempferol (10(-5) M) also caused antiproliferative effect on MCF-7 cell in the presence of E2 (10(-11) M) and restored to the addition of excess E2 (10(-7) M), which confirms that antiproliferation of kaempferol was induced via ER-dependent pathway. However, at 10(-4) M, concentration higher than the concentrations at which the estrogenic effects of kaempferol are detected (10(-5) M), kaempferol induced strong antiproliferative effect, but were unaffected by the addition of excess E2 (10(-7) M) indicating that kaempferol exerts antiproliferation via ER-independent pathway. In particular, kaempferol blocked the focus formation induced by E2, which confirms that kaempferol might inhibit the malignant transformation caused by estrogens. Therefore, we suggested that kaempferol might regulate a suitable level of estrogenic activity in the body and is expected to have potential beneficial effects in preventing estrogen imbalance diseases (breast cancer, osteoporosis, cardiovascular disease and etc.).
Collapse
Affiliation(s)
- Seung Min Oh
- College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | |
Collapse
|
12
|
Hradil P, Grepl M, Hlavác J, Soural M, Malon M, Bertolasi V. Some New Routes for the Preparation of 3-Amino-2-phenyl-4(1H)-quinolinones from Anthranilamides. J Org Chem 2005; 71:819-22. [PMID: 16409002 DOI: 10.1021/jo051303k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] Several new routes for the preparation of 3-amino-2-phenyl-4-1(H)-quinolinone 7a are compared. The most efficient is based on the cyclization of phenacyl anthranilamide 2a in the presence of (poly)phosphoric acid. The mechanisms of the rearrangements involved are discussed on the basis of the structures of isolated heterocyclic intermediates. The best methodology for the preparation of the title compound 7a was verified, and 10 other quinolinones 7 were prepared.
Collapse
Affiliation(s)
- Pavel Hradil
- Department of Organic Chemistry, Palacký University, Tr. Svobody 8, 771 46 Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
13
|
Niering P, Michels G, Wätjen W, Ohler S, Steffan B, Chovolou Y, Kampkötter A, Proksch P, Kahl R. Protective and detrimental effects of kaempferol in rat H4IIE cells: Implication of oxidative stress and apoptosis. Toxicol Appl Pharmacol 2005; 209:114-22. [PMID: 16112156 DOI: 10.1016/j.taap.2005.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 03/23/2005] [Accepted: 04/02/2005] [Indexed: 10/25/2022]
Abstract
Flavonoids are ubiquitous substances in fruits and vegetables. Among them, the flavonol kaempferol contributes up to 30% of total dietary flavonoid intake. Flavonoids are assumed to exert beneficial effects on human health, e.g., anticancer properties. For this reason, they are used in food supplements at high doses. The aim of this project was to determine the effects of kaempferol on oxidative stress and apoptosis in H4IIE rat hepatoma cells over a broad concentration range. Kaempferol is rapidly taken up and glucuronidated by H4IIE cells. The results demonstrate that kaempferol protects against H2O2-induced cellular damage at concentrations which lead to cell death and DNA strand breaks in the absence of H2O2-mediated oxidative stress. Preincubation with 50 microM kaempferol exerts protection against the loss of cell viability induced by 500 microM H2O2 (2 h) while the same concentration of kaempferol reduces cell viability by 50% in the absence of H2O2 (24 h). Preincubation with 50 microM kaempferol ameliorates the strong DNA damage induced by 500 microM H2O2 while 50 microM kaempferol leads to a significant increase of DNA breakage in the absence of H2O2. Preincubation with 50 microM kaempferol reduces H2O2-mediated caspase-3 activity by 40% (4 h) while the same concentration of kaempferol leads to the formation of a DNA ladder in the absence of H2O2 (24 h). It is concluded that the intake of high dose kaempferol in food supplements may not be advisable because in our cellular model protective kaempferol concentrations can also induce DNA damage and apoptosis by themselves.
Collapse
Affiliation(s)
- Petra Niering
- Institute of Toxicology, Heinrich-Heine-University, PO Box 101007, 40001 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|