1
|
Herrera-Marcos LV, Martínez-Beamonte R, Arnal C, Barranquero C, Puente-Lanzarote JJ, Lou-Bonafonte JM, Gonzalo-Romeo G, Mocciaro G, Jenkins B, Surra JC, Rodríguez-Yoldi MJ, Alastrué-Vera V, Letosa J, García-Gil A, Güemes A, Koulman A, Osada J. Lipidomic signatures discriminate subtle hepatic changes in the progression of porcine nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G411-G425. [PMID: 38375587 DOI: 10.1152/ajpgi.00264.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
Recently, the development of nonalcoholic steatohepatitis (NASH) in common strains of pigs has been achieved using a diet high in saturated fat, fructose, cholesterol, and cholate and deficient in choline and methionine. The aim of the present work was to characterize the hepatic and plasma lipidomic changes that accompany the progression of NASH and its reversal by switching pigs back to a chow diet. One month of this extreme steatotic diet was sufficient to induce porcine NASH. The lipidomic platform using liquid chromatography-mass spectrometry analyzed 467 lipid species. Seven hepatic phospholipids [PC(30:0), PC(32:0), PC(33:0), PC(33:1), PC(34:0), PC(34:3) and PC(36:2)] significantly discriminated the time of dietary exposure, and PC(30:0), PC(33:0), PC(33:1) and PC(34:0) showed rapid adaptation in the reversion period. Three transcripts (CS, MAT1A, and SPP1) showed significant changes associated with hepatic triglycerides and PC(33:0). Plasma lipidomics revealed that these species [FA 16:0, FA 18:0, LPC(17:1), PA(40:5), PC(37:1), TG(45:0), TG(47:2) and TG(51:0)] were able to discriminate the time of dietary exposure. Among them, FA 16:0, FA 18:0, LPC(17:1) and PA(40:5) changed the trend in the reversion phase. Plasma LDL-cholesterol and IL12P40 were good parameters to study the progression of NASH, but their capacity was surpassed by hepatic [PC(33:0), PC(33:1), and PC(34:0)] or plasma lipid [FA 16:0, FA 18:0, and LPC(17:1)] species. Taken together, these lipid species can be used as biomarkers of metabolic changes in the progression and regression of NASH in this model. The lipid changes suggest that the development of NASH also affects peripheral lipid metabolism.NEW & NOTEWORTHY A NASH stage was obtained in crossbred pigs. Hepatic [PC(33:0), PC(33:1) and PC(34:0)] or plasma [FA 16:0, FA 18:0 and LPC(17:1)] species were sensitive parameters to detect subtle changes in development and regression of nonalcoholic steatohepatitis (NASH). These findings may delineate the liquid biopsy to detect subtle changes in progression or in treatments. Furthermore, phospholipid changes according to the insult-inducing NASH may play an important role in accepting or rejecting fatty livers in transplantation.
Collapse
Affiliation(s)
- Luis V Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan J Puente-Lanzarote
- Servicio de Bioquímica Clínica, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - José M Lou-Bonafonte
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Gonzalo Gonzalo-Romeo
- Servicio General de Apoyo a la Investigación, División de Experimentación Animal, Universidad de Zaragoza, Zaragoza, Spain
| | - Gabriele Mocciaro
- Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Benjamin Jenkins
- Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jesús Letosa
- Industrial Zootécnica Aragonesa S.L. (INZAR, S.L.), Zaragoza, Spain
| | - Agustín García-Gil
- Departamento de Cirugía, Facultad de Medicina, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Güemes
- Departamento de Cirugía, Facultad de Medicina, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Świątkiewicz M, Oczkowicz M, Ropka-Molik K, Hanczakowska E. The effect of dietary fatty acid composition on adipose tissue quality and expression of genes related to lipid metabolism in porcine livers. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Labrecque B, Beaudry D, Mayhue M, Hallé C, Bordignon V, Murphy BD, Palin MF. Molecular characterization and expression analysis of the porcine paraoxonase 3 (PON3) gene. Gene 2009; 443:110-20. [PMID: 19426787 DOI: 10.1016/j.gene.2009.04.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 04/06/2009] [Accepted: 04/29/2009] [Indexed: 02/08/2023]
|
4
|
Vassiliou EK, Gonzalez A, Garcia C, Tadros JH, Chakraborty G, Toney JH. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems. Lipids Health Dis 2009; 8:25. [PMID: 19558671 PMCID: PMC2706835 DOI: 10.1186/1476-511x-8-25] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 06/26/2009] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Chronic inflammation is a key player in pathogenesis. The inflammatory cytokine, tumor necrosis factor-alpha is a well known inflammatory protein, and has been a therapeutic target for the treatment of diseases such as Rheumatoid Arthritis and Crohn's Disease. Obesity is a well known risk factor for developing non-insulin dependent diabetes melitus. Adipose tissue has been shown to produce tumor necrosis factor-alpha, which has the ability to reduce insulin secretion and induce insulin resistance. Based on these observations, we sought to investigate the impact of unsaturated fatty acids such as oleic acid in the presence of TNF-alpha in terms of insulin production, the molecular mechanisms involved and the in vivo effect of a diet high in oleic acid on a mouse model of type II diabetes, KKAy. METHODS The rat pancreatic beta cell line INS-1 was used as a cell biological model since it exhibits glucose dependent insulin secretion. Insulin production assessment was carried out using enzyme linked immunosorbent assay and cAMP quantification with competitive ELISA. Viability of TNF-alpha and oleic acid treated cells was evaluated using flow cytometry. PPAR-gamma translocation was assessed using a PPRE based ELISA system. In vivo studies were carried out on adult male KKAy mice and glucose levels were measured with a glucometer. RESULTS Oleic acid and peanut oil high in oleic acid were able to enhance insulin production in INS-1. TNF-alpha inhibited insulin production but pre-treatment with oleic acid reversed this inhibitory effect. The viability status of INS-1 cells treated with TNF-alpha and oleic acid was not affected. Translocation of the peroxisome proliferator- activated receptor transcription factor to the nucleus was elevated in oleic acid treated cells. Finally, type II diabetic mice that were administered a high oleic acid diet derived from peanut oil, had decreased glucose levels compared to animals administered a high fat diet with no oleic acid. CONCLUSION Oleic acid was found to be effective in reversing the inhibitory effect in insulin production of the inflammatory cytokine TNF-alpha. This finding is consistent with the reported therapeutic characteristics of other monounsaturated and polyunsaturated fatty acids. Furthermore, a diet high in oleic acid, which can be easily achieved through consumption of peanuts and olive oil, can have a beneficial effect in type II diabetes and ultimately reverse the negative effects of inflammatory cytokines observed in obesity and non insulin dependent diabetes mellitus.
Collapse
Affiliation(s)
- Evros K Vassiliou
- Department of Biological Sciences, Kean University, 1000 Morris Avenue, Union, New Jersey 07083, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Guillén N, Acín S, Navarro MA, Perona JS, Arbonés-Mainar JM, Arnal C, Sarría AJ, Surra JC, Carnicer R, Orman I, Segovia JC, Ruiz-Gutiérrez V, Osada J. Squalene in a sex-dependent manner modulates atherosclerotic lesion which correlates with hepatic fat content in apoE-knockout male mice. Atherosclerosis 2008; 197:72-83. [PMID: 17854812 DOI: 10.1016/j.atherosclerosis.2007.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 07/23/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Squalene is an intermediate of cholesterol biosynthesis which can be obtained from the diet where it is abundant, for example, in olive oil. The effect of this isoprenoid on the development of atherosclerosis was investigated on apoE-knockout mice. METHODS AND RESULTS Two groups of animals, separated according to sex, were fed on standard chow diet: the control group receiving only vehicle and the second group an aqueous solution of squalene to provide a dose of 1g/kg/day in male and female mice. This treatment was maintained for 10 weeks. At the end of this period, plasma lipid parameters, oxidative stress markers and hepatic fat were measured as well as cross-sectional lesion area of aortic root in both groups. Data showed that in males squalene feeding reduced atherosclerotic lesion area independently of plasma lipids and activation of circulating monocytes. In contrast, squalene intake did not decrease lesion area in females, despite reducing plasma cholesterol and triglycerides, isoprostane and percentage of Mac-1 expressing white cells. In males, atherosclerotic lesion area was positively and significantly associated with hepatic fat content and the plasma triglycerides were also strongly associated with liver weight. CONCLUSIONS These results indicate that administration of squalene modulates lesion development in a gender specific manner, and that accumulation of hepatic fat by liver is highly correlated with lesion progression in males. Hence, squalene administration could be used as a safe alternative to correct hepatic steatosis and atherosclerosis particularly in males.
Collapse
Affiliation(s)
- Natalia Guillén
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Arbonés-Mainar JM, Navarro MA, Carnicer R, Guillén N, Surra JC, Acín S, Guzmán MA, Sarría AJ, Arnal C, Aguilera MP, Jiménez A, Beltrán G, Uceda M, Osada J. Accelerated atherosclerosis in apolipoprotein E-deficient mice fed Western diets containing palm oil compared with extra virgin olive oils: a role for small, dense high-density lipoproteins. Atherosclerosis 2006; 194:372-82. [PMID: 17141784 DOI: 10.1016/j.atherosclerosis.2006.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 11/03/2006] [Accepted: 11/08/2006] [Indexed: 02/05/2023]
Abstract
To test the hypothesis that extra virgin olive oils from different cultivars added to Western diets might behave differently than palm oil in the development of atherosclerosis, apoE-deficient mice were fed diets containing different cultivars of olive oil for 10 weeks. Female mice were assigned randomly to one of the following five groups: (1-4) fed chow diets supplemented with 0.15% (w/w) cholesterol and 20% (w/w) extra virgin olive oil from the Arbequina, Picual, Cornicabra, or Empeltre cultivars, and (5) fed a chow diet supplemented with 0.15% cholesterol and 20% palm oil. Compared to diets containing palm oil, a Western diet supplemented with one of several varieties of extra virgin olive oil decreased atherosclerosis lesions, reduced plaque size, and decreased macrophage recruitment. Unexpectedly, total plasma paraoxonase activity, apoA-I, plasma triglycerides, and cholesterol played minor roles in the regulation of differential aortic lesion development. Extra virgin olive oil induced a cholesterol-poor, apoA-IV-enriched lipoparticle that has enhanced arylesterase and antioxidant activities, which is closely associated with reductions in atherosclerotic lesions. Given the anti-atherogenic properties of extra virgin olive oil evident in animal models fed a Western diet, clinical trials are needed to establish whether these oils are a safe and effective means of treating atherosclerosis.
Collapse
Affiliation(s)
- José M Arbonés-Mainar
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, E-50013 Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Carnicer R, Navarro MA, Arbonés-Mainar JM, Acín S, Guzmán MA, Surra JC, Arnal C, de Las Heras M, Blanco-Vaca F, Osada J. Folic acid supplementation delays atherosclerotic lesion development in apoE-deficient mice. Life Sci 2006; 80:638-43. [PMID: 17118406 DOI: 10.1016/j.lfs.2006.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/30/2006] [Accepted: 10/17/2006] [Indexed: 11/19/2022]
Abstract
Folic acid is a vitamin that when used as a dietary supplementation can improve endothelial function. To assess the effect of folic acid on the development of atherosclerosis, male apolipoprotein E-deficient mice fed a standard chow diet received either water (control group) or an aqueous solution of folic acid that provided a dose of 75 microg/kg/day, for ten weeks. At the time of sacrifice, blood was drawn and the heart removed. The study measured plasma homocysteine, lipids, lipoproteins, low-density lipoprotein (LDL) oxidation, isoprostane, paraoxonase, and apolipoproteins, and aortic atherosclerotic areas. In folic acid-treated animals, total cholesterol, mainly carried in very low-density and low-density lipoproteins, increased significantly, and homocysteine, HDL cholesterol, paraoxonase, and triglyceride levels did not change significantly. Plasma isoprostane and apolipoprotein (apo) B levels decreased. The resistance of LDL to oxidization and plasma apoA-I and apoA-IV levels increased with a concomitant decrease in the area of atherosclerotic lesions. The administration of folic acid decreased atherosclerotic lesions independently of plasma homocysteine and cholesterol levels, but was associated with plasma levels of apolipoproteins A-I, A-IV and B, and decreased oxidative stress.
Collapse
Affiliation(s)
- Ricardo Carnicer
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Guillén N, Navarro MA, Surra JC, Arnal C, Fernández-Juan M, Cebrián-Pérez JA, Osada J. Cloning, characterization, expression and comparative analysis of pig Golgi membrane sphingomyelin synthase 1. Gene 2006; 388:117-24. [PMID: 17156943 DOI: 10.1016/j.gene.2006.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 10/13/2006] [Accepted: 10/17/2006] [Indexed: 11/26/2022]
Abstract
Pig sphingomyelin synthase 1 (SMS1) cDNA was cloned, characterized and compared to the human ortholog. Porcine protein consists of 413 amino acids and displays a 97% sequence identity with human protein. A phylogenic tree of proteins reveals that porcine SMS1 is more closely related to bovine and rodent proteins than to human. Analysis of protein mass was higher than the theoretical prediction based on amino acid sequence suggesting a kind of posttranslational modification. Quantitative representation of tissue distribution obtained by real-time RT-PCR showed that it was widely expressed although important variations in levels were obtained among organs. Thus, the cardiovascular system, especially the heart, showed the highest value of all the tissues studied. Regional differences of expression were observed in the central nervous system and intestinal tract. Analysis of the hepatic mRNA and protein expressions of SMS1 following turpentine treatment revealed a progressive decrease in the former paralleled by a decrease in the protein concentration. These findings indicate the variation in expression in the different tissues might suggest a different requirement of Golgi sphingomyelin for the specific function in each organ and a regulation of the enzyme in response to turpentine-induced hepatic injury.
Collapse
Affiliation(s)
- Natalia Guillén
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, E-50013 Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Acín S, Navarro MA, Arbonés-Mainar JM, Guillén N, Sarría AJ, Carnicer R, Surra JC, Orman I, Segovia JC, Torre RDL, Covas MI, Fernández-Bolaños J, Ruiz-Gutiérrez V, Osada J. Hydroxytyrosol administration enhances atherosclerotic lesion development in apo E deficient mice. J Biochem 2006; 140:383-91. [PMID: 16873395 DOI: 10.1093/jb/mvj166] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hydroxytyrosol is a phenol found in olive oil. To verify the effect of hydroxytyrosol on the development of atherosclerosis, two groups of apo E deficient male mice on a standard chow diet were used: the control group receiving only water, and the second group an aqueous solution of hydroxytyrosol in order to provide a dose of 10 mg/kg/day to each mouse. This treatment was maintained for 10 weeks. At the moment of sacrifice, blood was drawn and heart removed. Plasma lipids, apolipoproteins and monocyte Mac-1 expression were assayed as well as aortic atherosclerotic areas in both groups. Data showed no significant changes in HDL cholesterol, paraoxonase, apolipoprotein B or triglyceride levels. However, hydroxytyrosol administration decreased apolipoprotein A-I and increased total cholesterol, atherosclerotic lesion areas and circulating monocytes expressing Mac-1. The latter was highly correlated with lesion areas (r = 0.65, P < 0.01). These results indicate that administration of hydroxytyrosol in low cholesterol diets increases atherosclerotic lesion associated with the degree of monocyte activation and remodelling of plasma lipoproteins. Our data supports the concept that phenolic-enriched products, out of the original matrix, could be not only non useful but also harmful. Our results suggest that the formulation of possible functional foods should approximate as much as possible the natural environment in which active molecules are found.
Collapse
Affiliation(s)
- Sergio Acín
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Arbonés-Mainar JM, Navarro MA, Acín S, Guzmán MA, Arnal C, Surra JC, Carnicer R, Roche HM, Osada J. Trans-10, cis-12- and cis-9, trans-11-conjugated linoleic acid isomers selectively modify HDL-apolipoprotein composition in apolipoprotein E knockout mice. J Nutr 2006; 136:353-9. [PMID: 16424111 DOI: 10.1093/jn/136.2.353] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trans-10, cis-12-conjugated linoleic acid (CLA)-enriched diets promote atherosclerosis in mice despite increasing blood concentrations of HDL cholesterol. This suggests that under these conditions, the HDL apolipoproteins (apo) produced are abnormal. To test this hypothesis, apoE-deficient mice were fed a Western-type diet enriched with linoleic acid (control), cis-9, trans-11-CLA or trans-10, cis-12-CLA (1.0% wt/wt) for 12 wk, and the effects on HDL metabolism and apoC-III levels recorded. Compared with the control and cis-9, trans-11-CLA mice, those fed the trans-10, cis-12-CLA diet had significantly higher HDL cholesterol concentrations, and had a higher incidence of hypertriglyceridemia and hepatic steatosis. Plasma apoA-I and paraoxonase concentrations were significantly lower in the trans-10, cis-12-CLA group than in the cis-9, trans-11-CLA group. These reductions were associated with decreased hepatic expression of these proteins and a shift toward lipid-poor apolipoprotein particles. The plasma apoA-II concentration increased with its corresponding mRNA concentration in the liver, and was preferentially bound to HDL in the trans-10, cis-12-CLA mice, thus explaining the increased HDL cholesterol concentrations in this group. Significant, positive associations were found between apoA-II and C-III (r=0.883, P<0.001) and between apoA-II and atherosclerosis (r=0.68, P<0.001). These results indicate that trans-10, cis-12-CLA intake modifies HDL to form a proatherogenic apoA-II containing particle and promotes phenotypic changes compatible with metabolic syndrome. Cis-9, trans-11-CLA does not promote this detrimental effect.
Collapse
Affiliation(s)
- José M Arbonés-Mainar
- Departmento de Bioquímica y Biología Molecular y Celular, Trinity College, Dublin, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Navarro MA, Carpintero R, Acín S, Arbonés-Mainar JM, Calleja L, Carnicer R, Surra JC, Guzmán-García MA, González-Ramón N, Iturralde M, Lampreave F, Piñeiro A, Osada J. Immune-regulation of the apolipoprotein A-I/C-III/A-IV gene cluster in experimental inflammation. Cytokine 2005; 31:52-63. [PMID: 15878672 DOI: 10.1016/j.cyto.2005.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 03/04/2005] [Accepted: 03/23/2005] [Indexed: 01/26/2023]
Abstract
Apolipoprotein A-IV is a member of the apo A-I/C-III/A-IV gene cluster. In order to investigate its hypothetical coordinated regulation, an acute phase was induced in pigs by turpentine oil injection. The hepatic expression of the gene cluster as well as the plasma levels of apolipoproteins were monitored at different time periods. Furthermore, the involvement of the inflammatory mediators' interleukins 1 and 6 and tumor necrosis factor in the regulation of this gene cluster was tested in cultured pig hepatocytes, incubated with those mediators and apo A-I/C-III/A-IV gene cluster expression at the mRNA level was measured. In response to turpentine oil-induced inflammation, a decreased hepatic apo A-IV mRNA expression was observed (independent of apo A-I and apo C-III mRNA) not correlating with the plasma protein levels. The distribution of plasma apo A-IV experienced a shift from HDL to larger particles. In contrast, the changes in apo A-I and apo C-III mRNA were reflected in their corresponding plasma levels. Addition of cytokines to cultured pig hepatocytes also decreased apo A-IV and apo A-I mRNA levels. All these results show that the down-regulation of apolipoprotein A-I and A-IV messages in the liver may be mediated by interleukin 6 and TNF-alpha. The well-known HDL decrease found in many different acute-phase responses also appears in the pig due to the decreased expression of apolipoprotein A-I and the enlargement of the apolipoprotein A-IV-containing HDL.
Collapse
Affiliation(s)
- María A Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, E-50013 Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|