1
|
Ou H, Yang Q, Zhang Y, Tang X, Xiao M, Li S, Lei L, Xie Z. The role of cells and their derivatives in otorhinolaryngologic diseases treatment. Life Sci 2024; 352:122898. [PMID: 38997061 DOI: 10.1016/j.lfs.2024.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Otolaryngology is an important specialty in the field of surgery that deals with the diagnosis and treatment of the ear, nose, throat, trachea, as well as related anatomical structures. Various otolaryngological disorders are difficult to treat using established pharmacological and surgical approaches. The advent of molecular and cellular therapies led to further progress in this respect. This article reviews the therapeutic strategies of using stem cells, immune cells, and chondrocytes in otorhinolaryngology. As the most widely recognized cell derivatives, exosomes were also systematically reviewed for their therapeutic potential in head and neck cancer, otitis media, and allergic rhinitis. Finally, we summarize the limitations of stem cells, chondrocytes, and exosomes, as well as possible solutions, and provide an outlook on the future direction of cell- and derivative-based therapies in otorhinolaryngology, to offer a theoretical foundation for the clinical translation of this therapeutic modality.
Collapse
Affiliation(s)
- Haibo Ou
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Xiaojun Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| | - Zuozhong Xie
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
2
|
Kaboodkhani R, Mehrabani D, Moghaddam A, Salahshoori I, Khonakdar HA. Tissue engineering in otology: a review of achievements. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1105-1153. [PMID: 38386362 DOI: 10.1080/09205063.2024.2318822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Tissue engineering application in otology spans a distance from the pinna to auditory nerve covered with specialized tissues and functions such as sense of hearing and aesthetics. It holds the potential to address the barriers of lack of donor tissue, poor tissue match, and transplant rejection through provision of new and healthy tissues similar to the host and possesses the capacity to renew, to regenerate, and to repair in-vivo and was shown to be a bypasses for any need to immunosuppression. This review aims to investigate the application of tissue engineering in otology and to evaluate the achievements and challenges in external, middle and inner ear sections. Since gaining the recent knowledge and training on use of different scaffolds is essential for otology specialists and who look for the recovery of ear function and aesthetics of patients, it is shown in this review how utilizing tissue engineering and cell transplantation, regenerative medicine can provide advancements in hearing and ear aesthetics to fit different patients' needs.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | | | | | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Fang Q, Wei Y, Zhang Y, Cao W, Yan L, Kong M, Zhu Y, Xu Y, Guo L, Zhang L, Wang W, Yu Y, Sun J, Yang J. Stem cells as potential therapeutics for hearing loss. Front Neurosci 2023; 17:1259889. [PMID: 37746148 PMCID: PMC10512725 DOI: 10.3389/fnins.2023.1259889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Hearing impairment is a global health problem. Stem cell therapy has become a cutting-edge approach to tissue regeneration. In this review, the recent advances in stem cell therapy for hearing loss have been discussed. Nanomaterials can modulate the stem cell microenvironment to augment the therapeutic effects further. The potential of combining nanomaterials with stem cells for repairing and regenerating damaged inner ear hair cells (HCs) and spiral ganglion neurons (SGNs) has also been discussed. Stem cell-derived exosomes can contribute to the repair and regeneration of damaged tissue, and the research progress on exosome-based hearing loss treatment has been summarized as well. Despite stem cell therapy's technical and practical limitations, the findings reported so far are promising and warrant further investigation for eventual clinical translation.
Collapse
Affiliation(s)
- Qiaojun Fang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yongjie Wei
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuhua Zhang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Cao
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Yan
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengdie Kong
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yongjun Zhu
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Xu
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lingna Guo
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lei Zhang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weiqing Wang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yafeng Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jingwu Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianming Yang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Hu H, Chen J, Li S, Xu T, Li Y. 3D printing technology and applied materials in eardrum regeneration. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:950-985. [PMID: 36373498 DOI: 10.1080/09205063.2022.2147350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tympanic membrane perforation is a common condition in clinical otolaryngology. Although some eardrum patients can self-heal, a long period of non-healing perforation leads to persistent otitis media, conductive deafness, and poor quality of life. Tympanic membrane repair with autologous materials requires a second incision, and the sampling site may get infected. It is challenging to repair tympanic membranes while maintaining high functionality, safety, affordability, and aesthetics. 3D bioprinting can be used to fabricate tissue patches with materials, factors, and cells in a design manner. This paper reviews 3D printing technology that is being used widely in recent years to construct eardrum stents and the utilized applied materials for tympanic membrane repair. The paper begins with an introduction of the physiological structure of the tympanic membrane, briefly reviews the current clinical method thereafter, highlights the recent 3D printing-related strategies in tympanic membrane repair, describes the materials and cells that might play an important role in 3D printing, and finally provides a perspective of this field.
Collapse
Affiliation(s)
- Haolei Hu
- Department of Otolaryngology, the 988th Hospital of the Joint Support Force of the Chinese People’s Liberation Army, Zhengzhou City 450042, Henan Province, China
| | - Jianwei Chen
- Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, 518057, People’s Republic of China
| | - Shuo Li
- Xinxiang Medical College, Xinxiang,453003, Henan Province, China
| | - Tao Xu
- Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, 518057, People’s Republic of China
| | - Yi Li
- Department of Otolaryngology, the 988th Hospital of the Joint Support Force of the Chinese People’s Liberation Army, Zhengzhou City 450042, Henan Province, China
| |
Collapse
|
5
|
Mesenchymal Stem Cells for Treatment of Delayed-Healing Tympanic Membrane Perforations Using Hyaluronate-based Laminas as a Delivery System. Otol Neurotol 2022; 43:e497-e506. [DOI: 10.1097/mao.0000000000003468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
A design-thinking approach to therapeutic translation: tympanic regeneration. Curr Opin Otolaryngol Head Neck Surg 2021; 28:274-280. [PMID: 32833885 DOI: 10.1097/moo.0000000000000650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Clinician researchers face the pressures of meeting academic benchmarks combined with advancing new therapies to patients. The vast majority of drug discoveries fail in translation. A new method of meeting the challenges of preclinical therapeutic translation is presented using the example of tympanic regeneration. RECENT FINDINGS The key to a design-thinking approach to therapeutic translation is to 'begin with the end in mind' by widening the scope of the problem, with multiple points of view, to not only understand the disease but the context for the patient and the health system in which it occurs. Idea for therapeutics should be tested in relevant models early and once proof of efficacy is established, translational milestones that represent the greatest risk, such as safety and toxicity should be addressed first. It is important to seek the feedback of industry early to understand what milestones should be best addressed next with limited academic resources. Whenever proceeding, guidelines for maintaining scientific reproducibility should be followed to minimize risk of failure during transfer into industry. SUMMARY A Design-thinking approach addresses the potential failures in drug discovery and preclinical translation.
Collapse
|
7
|
Kaboodkhani R, Mehrabani D, Karimi-Busheri F. Achievements and Challenges in Transplantation of Mesenchymal Stem Cells in Otorhinolaryngology. J Clin Med 2021; 10:2940. [PMID: 34209041 PMCID: PMC8267672 DOI: 10.3390/jcm10132940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Otorhinolaryngology enrolls head and neck surgery in various tissues such as ear, nose, and throat (ENT) that govern different activities such as hearing, breathing, smelling, production of vocal sounds, the balance, deglutition, facial animation, air filtration and humidification, and articulation during speech, while absence of these functions can lead to high morbidity and even mortality. Conventional therapies for head and neck damaged tissues include grafts, transplants, and artificial materials, but grafts have limited availability and cause morbidity in the donor site. To improve these limitations, regenerative medicine, as a novel and rapidly growing field, has opened a new therapeutic window in otorhinolaryngology by using cell transplantation to target the healing and replacement of injured tissues. There is a high risk of rejection and tumor formation for transplantation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs); mesenchymal stem cells (MSCs) lack these drawbacks. They have easy expansion and antiapoptotic properties with a wide range of healing and aesthetic functions that make them a novel candidate in otorhinolaryngology for craniofacial defects and diseases and hold immense promise for bone tissue healing; even the tissue sources and types of MSCs, the method of cell introduction and their preparation quality can influence the final outcome in the injured tissue. In this review, we demonstrated the anti-inflammatory and immunomodulatory properties of MSCs, from different sources, to be safely used for cell-based therapies in otorhinolaryngology, while their achievements and challenges have been described too.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71936-36981, Iran;
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71987-74731, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
8
|
Cho GW, Moon C, Song A, Vijayakumar KA, Ang MJ, Jang CH. Effect of Growth Factor-Loaded Acellular Dermal Matrix/MSCs on Regeneration of Chronic Tympanic Membrane Perforations in Rats. J Clin Med 2021; 10:jcm10071541. [PMID: 33917576 PMCID: PMC8038787 DOI: 10.3390/jcm10071541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 01/09/2023] Open
Abstract
The success rate of grafting using acellular dermal matrix (ADM) for chronic tympanic membrane was reported in previous studies to be lower than fascia or perichondrium. Combining mesenchymal stem cells (MSCs) and growth factor-loaded ADM for the regeneration of chronic TMP has not been reported so far. In this study, we hypothesized that combining growth factor-loaded ADM/MSCs could promote the recruitment of MSCs and assist in TMP regeneration. We evaluated the regeneration and compared the performance of four scaffolds in both in vitro and in vivo studies. MTT, qPCR, and immunoblotting were performed with MSCs. In vivo study was conducted in 4 groups (control; ADM only, ADM/MSC, ADM/MSC/bFGF, ADM/MSC/EGF) of rats and inferences were made by otoendoscopy and histological changes. Attachment of MSCs on ADM was observed by confocal microscopy. Proliferation rate increased with time in all treated cells. Regeneration-related gene expression in the treated groups was higher. Also, graft success rate was significantly higher in ADM/MSC/EGF group than other groups. Significant relationships were disclosed in neodrum thickness between each group. The results suggest, in future, combining EGF with ADM/MSCs could possibly be used as an outpatient treatment, without the need for surgery for eardrum regeneration.
Collapse
Affiliation(s)
- Gwang-Won Cho
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea;
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea; (A.S.); (K.A.V.)
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (C.M.); (M.J.A.)
| | - Anji Song
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea; (A.S.); (K.A.V.)
| | - Karthikeyan A. Vijayakumar
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea; (A.S.); (K.A.V.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (C.M.); (M.J.A.)
| | - Chul Ho Jang
- Department of Otolaryngology, Medical School, Chonnam National University, Hakdong 8, Dongku, Gwangju 61452, Korea
- Correspondence: ; Tel.: +82-62-220-6774
| |
Collapse
|
9
|
Hussain Z, Pei R. Necessities, opportunities, and challenges for tympanic membrane perforation scaffolding-based bioengineering. Biomed Mater 2021; 16. [PMID: 33260166 DOI: 10.1088/1748-605x/abcf5d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023]
Abstract
Tympanic membrane (TM) perforation is a global clinical dilemma. It occurs as a consequence of object penetration, blast trauma, barotrauma, and middle ear diseases. TM perforation may lead to otitis media, retraction pockets, cholesteatoma, and conductive deafness. Molecular therapies may not be suitable to treat perforation because there is no underlying tissue matrix to support epithelium bridging. Chronic perforations are usually reconstructed with autologous grafts via surgical myringoplasty. Surgical treatment is uncomfortable for the patients. The grafting materials are not perfect because they produce an opaque membrane, fail in up to 20% of cases, and are suboptimal to restore acoustic function. Millions of patients from developing parts of the world have not got access to surgical grafting due to operational complexities, lack of surgical resources, and high cost. These shortcomings emphasize bioengineering to improve placement options, healing rate, hearing outcomes, and minimize surgical procedures. This review highlights cellular, structural, pathophysiological, and perforation specific determinants that affect healing, acoustic and surgical outcomes; and integrates necessities relevant to bioengineered scaffolds. This study further summarizes scaffolding components, progress in scaffolding strategies and design, and engenders limitations and challenges for optimal bioengineering of chronic perforation.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, People's Republic of China
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, People's Republic of China
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| |
Collapse
|
10
|
Aleemardani M, Bagher Z, Farhadi M, Chahsetareh H, Najafi R, Eftekhari B, Seifalian A. Can Tissue Engineering Bring Hope to the Development of Human Tympanic Membrane? TISSUE ENGINEERING PART B-REVIEWS 2021; 27:572-589. [PMID: 33164696 DOI: 10.1089/ten.teb.2020.0176] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tympanic membrane (TM), more commonly known as the eardrum, consists of a thin layer of tissue in the human ear that receives sound vibrations from outside of the body and transmits them to the auditory ossicles. The TM perforations (TMPs) are a common ontological condition, which in some cases can result in permanent hearing loss. Despite the spontaneous healing capacity of the TM to regenerate in the majority of cases of acute perforation, chronic perforations require surgical interventions. However, the disadvantages of the surgical procedure include infection, anesthetic risks, and high failure of graft patency. The tissue engineering strategy, which includes the applications of a three-dimensional (3D) scaffold, cells, and biomolecules or a combination of them for the closure of chronic perforation, has been considered as an emerging treatment. Using this approach, emerging products are currently under development to regenerate the TM structure and its properties. This research aimed to highlight the problems with the current methods of TMP treatment, and critically evaluate the tissue engineering approaches, which may overcome these drawbacks. The focus of this review is on recent literature to critically discuss the emerging advanced materials used as a 3D scaffold in the development of a TM with cellular engineering, biomolecules, cells, and the fabrications of the TM and its pathway to the clinical application. In this review, we discuss the properties of TM and the advantages and disadvantages of the current clinical products for repair and replacement of the TM. Furthermore, we provide an overview of the in vitro and preclinical studies of emerging products over the past 5 years. The results of recent preclinical studies suggest that the tissue engineering field holds significant promise.
Collapse
Affiliation(s)
- Mina Aleemardani
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Chahsetareh
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Roghayeh Najafi
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Behnaz Eftekhari
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.), London BioScience Innovation Centre, London, United Kingdom
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW One of the most common diseases of the tympanic membrane is a perforation, and tympanoplasty is one of the more common procedures in otolaryngology. Tympanic membrane regeneration and bioengineering aim to improve the success rate of the procedure, increase the availability of different scaffolds and provide innovative tools that will simplify the surgical technique and make it accessible for surgeons with varying expertise level. This review aims to raise awareness of current tissue engineering developments in tympanic membrane regeneration and how they may augment current clinical practices. We focus here on achievements in tympanic membrane cell cultures and on innovations in development of new scaffolds and growth factors that enhance regeneration of patient's native tympanic membranes. RECENT FINDINGS In recent years, great achievements were reached in the field of tympanic membrane regeneration in the three hallmarks of bioengineering: cells, scaffolds and bioactive molecules. New techniques for modeling normal tympanic membrane proliferation were developed, as well as for isolation and expansion of normal tympanic membrane keratinocytes from miniature samples of scarred tissue. Ongoing clinical trials aim to seal the perforation by applying different scaffolds infiltrated by growth factors on the tympanic membrane. SUMMARY Research efforts in tympanic membrane regeneration continue to seek the ideal single tissue-engineered substitute. Recent advances in tympanic membrane bioengineering include new types of scaffolds that may augment and provide a safe and effective alternative to the current gold-standard autograft. New bioactive molecules may simplify the surgical procedure and reduce surgical time by augmenting the native tympanic membrane regeneration. Several groups of bioengineering scientists and neurotologists are continuing to move forward and develop new strategies, seeking to create a fully functional tissue-engineered tympanic membrane.
Collapse
|
12
|
Kanzaki S, Toyoda M, Umezawa A, Ogawa K. Application of Mesenchymal Stem Cell Therapy and Inner Ear Regeneration for Hearing Loss: A Review. Int J Mol Sci 2020; 21:ijms21165764. [PMID: 32796705 PMCID: PMC7460950 DOI: 10.3390/ijms21165764] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023] Open
Abstract
Inner and middle ear disorders are the leading cause of hearing loss, and are said to be among the greatest risk factors of dementia. The use of regenerative medicine for the treatment of inner ear disorders may offer a potential alternative to cochlear implants for hearing recovery. In this paper, we reviewed recent research and clinical applications in middle and inner ear regeneration and cell therapy. Recently, the mechanism of inner ear regeneration has gradually been elucidated. "Inner ear stem cells," which may be considered the precursors of various cells in the inner ear, have been discovered in the cochlea and vestibule. Research indicates that cells such as hair cells, neurons, and spiral ligaments may form promising targets for inner ear regenerative therapies by the transplantation of stem cells, including mesenchymal stem cells. In addition, it is necessary to develop tests for the clinical monitoring of cell transplantation. Real-time imaging techniques and hearing rehabilitation techniques are also being investigated, and cell therapy has found clinical application in cochlear implant techniques.
Collapse
Affiliation(s)
- Sho Kanzaki
- Department of Otolaryngology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan;
- Correspondence:
| | - Masashi Toyoda
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan;
| | - Akihiro Umezawa
- National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan;
| | - Kaoru Ogawa
- Department of Otolaryngology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan;
| |
Collapse
|
13
|
Application of mesenchymal stem cell for tympanic membrane regeneration by tissue engineering approach. Int J Pediatr Otorhinolaryngol 2020; 133:109969. [PMID: 32126416 DOI: 10.1016/j.ijporl.2020.109969] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 12/13/2022]
Abstract
Regeneration is a biological process of cell renewal that takes place in damaged tissues or organs. It is naturally stimulated by the release of different growth factors, cytokines, surface molecules, and stem cells at the wounded sites. The tympanic membrane (TM) is an essential component of the hearing process in the auditory system, which can amplify and transmit sound vibrations through a chain of mobile ossicles. Middle ear infection, external sound pressure, insertion of sharp objects into the ear, and severe trauma are the main causes of TM perforations (TMPs), which could result in deficient hearing function. So far, otolaryngologists have employed surgical procedures (myringoplasty or tympanoplasty) to close the perforated eardrum. Because of limitations such as side effects, discomfort, and high cost to patients, there is a need for better alternatives to surgical procedures. Tissue engineering is a promising tool that can overcome the operational risk and restore, maintain, and improve the function of the TM using a range of biocompatible scaffolds, commercially available growth factors, and stem cells. Currently, multipotent mesenchymal stem cells (MSCs) are a good therapeutic option for the treatment of TMPs because of their self-renewing, and autocrine and paracrine activities. As there are fewer risks of isolation in the use of MSCs for the treatment of TMPs, they are more advantageous for tissue regeneration. The delivery of either MSCs alone or a combination of MSCs with biomaterials and growth factors (GFs) at the ruptured TM sites may enhance the activation of epithelial stem cell markers and increase the migration and proliferation of keratinocytes resulting in faster closure of TMPs. This review focuses on the current strategies used to treat TMPs and the importance of MSCs in TM regeneration. Particularly, we have discussed the synergistic effect of MSCs and scaffolds or GFs or scaffolds/GFs in TM regeneration. Finally, with the advancement of tissue engineering technologies such as 3D and 4D bioprinting, MSCs can be used to design patient-specific scaffolds, which may contain physical and chemical guidance cues to improve the extent and rate of targeted tissue regeneration.
Collapse
|
14
|
Langston M, Grobman A, Goncalves S, Angeli SI. Animal Model of Chronic Tympanic Membrane Perforation. Anat Rec (Hoboken) 2019; 303:619-625. [PMID: 31260172 DOI: 10.1002/ar.24220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 01/02/2019] [Accepted: 02/28/2019] [Indexed: 01/16/2023]
Abstract
Chronic tympanic membrane perforations (TMP) can be a source of significant morbidity from hearing loss, recurrent middle ear infections, changes in lifestyle, and risk of cholesteatoma formation. Laboratory experiments of TMP have been fraught by the rapid and high rate of spontaneous healing observed in animal models. There is controversy on the minimal time that perforations in animal models must have in order to be considered chronic TMP and thus have clinical relevance, with authors suggesting time periods of perforation patency of 8-12 weeks. In this article, we sought to create a clinically significant experimental model that could yield a high rate of perforation patency for at least 8 weeks. Animals undergoing acute TMP were exposed to three different experimental situations to delay the healing of the perforation: fractionated radiation, topical lipopolysaccharide application, and a combined dexamethasone and mitomycin C (DXM/MC) solution. In our study, the use of DXM/MC reliably produced TMP lasting at least 8 weeks in 86.48% of the cases without the need to reopen the perforation, infolding the edges of the membrane, or using physical barriers to prevent TMP closure. Histologically, the resulting perforated tympanum showed hyaline changes of the remnant tympanum and hyperkeratosis of the squamous epithelia of the external auditory canal. We believe that this model is reproducible and has potential use in experiments of delayed healing of TMP. Anat Rec, 303:619-625, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Michael Langston
- Department of Otolaryngology, Head and Neck Surgery, University of Miami Miller School of Medicine, University of Miami Ear Institute, Miami, Florida
| | - Ariel Grobman
- Department of Otolaryngology, Head and Neck Surgery, University of Miami Miller School of Medicine, University of Miami Ear Institute, Miami, Florida
| | - Stefania Goncalves
- Department of Otolaryngology, Head and Neck Surgery, University of Miami Miller School of Medicine, University of Miami Ear Institute, Miami, Florida
| | - Simon I Angeli
- Department of Otolaryngology, Head and Neck Surgery, University of Miami Miller School of Medicine, University of Miami Ear Institute, Miami, Florida
| |
Collapse
|
15
|
|
16
|
Mittal R, Jung HD, Mittal J, Eshraghi AA. A perspective on stem cell therapy for ear disorders. J Cell Physiol 2017; 233:1823-1824. [PMID: 28608552 DOI: 10.1002/jcp.26048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/12/2017] [Indexed: 12/29/2022]
Abstract
The use of stem cells in cell-based therapy is an emerging concept for the treatment of ear disorders. Tympanic membrane perforation (TMP) and inner ear disorders are some of the most commonly presented otologic disorders that can benefit from advances in cell-based therapy. Studies have already demonstrated that stem cell-based therapy can potentially be an effective treatment modality for acute and chronic TMP. Recent studies have also shown promise in application of cell-based approach to treat inner ear dysfunction. In this perspective, we will discuss the recent advancements regarding the use of cell-based therapy for ear disorders.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Hyunseo D Jung
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Adrien A Eshraghi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|