1
|
Ayas M, Muzaffar J, Borsetto D, Eitutis S, Phillips V, Tam YC, Salorio-Corbetto M, Bance ML. A scoping review on the clinical effectiveness of Trans-Impedance Matrix (TIM) measurements in detecting extracochlear electrodes and tip fold overs in Cochlear Ltd devices. PLoS One 2024; 19:e0299597. [PMID: 38452034 PMCID: PMC10919746 DOI: 10.1371/journal.pone.0299597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Extrusion of electrodes outside the cochlea and tip fold overs may lead to suboptimal outcomes in cochlear implant (CI) recipients. Intraoperative measures such as Trans-Impedance Matrix (TIM) measurements may enable clinicians to identify electrode malposition and direct surgeons to correctly place the electrode array during surgery. OBJECTIVES To assess the current literature on the effectiveness of TIM measurements in identifying extracochlear electrodes and tip fold overs. METHODS A scoping review of studies on TIM-based measurements were carried out using the Databases-Medline/PubMed, AMED, EMBASE, CINAHL and the Cochrane Library following PRISMA guidelines. Eleven full texts articles met the inclusion criteria. Only human studies pertaining to TIM as a tool used in CI were included in the review. Further, patient characteristics, electrode design, and TIM measurement outcomes were reported. RESULTS TIM measurements were available for 550 implanted ears with the subjects age ranged between 9 months to 89 years. Abnormal TIM measurements were reported for 6.55% (36). Tip fold over was detected in 3.64% (20) of the cases, extracochlear electrodes in 1.45% (8), and 1.45% (8) were reported as buckling. Slim-modiolar electrode array designs were more common (54.71%) than pre-curved (23.34%) or lateral wall (21.95%) electrode array. Abnormal cochlear anatomy was reported for five ears (0.89%), with normal cochlear anatomy for all other patients. CONCLUSION TIM measurement is a promising tool for the intraoperative detection of electrode malposition. TIM measurement has a potential to replace intraoperative imaging in future. Though, TIM measurement is in its early stages of clinical utility, intuitive normative data sets coupled with standardised criteria for detection of abnormal electrode positioning would enhance its sensitivity.
Collapse
Affiliation(s)
- Muhammed Ayas
- College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Emmeline Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cambridge Hearing Group, University of Cambridge, Cambridge, United Kingdom
| | - Jameel Muzaffar
- Cambridge Hearing Group, University of Cambridge, Cambridge, United Kingdom
- Department of Ear, Nose and Throat Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Daniele Borsetto
- Cambridge Hearing Group, University of Cambridge, Cambridge, United Kingdom
- Department of ENT, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Susan Eitutis
- Emmeline Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cambridge Hearing Group, University of Cambridge, Cambridge, United Kingdom
| | - Veronica Phillips
- Medical Library, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Yu Chuen Tam
- Emmeline Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cambridge Hearing Group, University of Cambridge, Cambridge, United Kingdom
| | - Marina Salorio-Corbetto
- Emmeline Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cambridge Hearing Group, University of Cambridge, Cambridge, United Kingdom
| | - Manohar L. Bance
- Cambridge Hearing Group, University of Cambridge, Cambridge, United Kingdom
- Department of ENT, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
2
|
Song B, Oh S, Kim D, Cho YS, Moon IJ. Changes in Revision Cochlear Implantation and Device Failure Profiles. Clin Exp Otorhinolaryngol 2024; 17:37-45. [PMID: 38228133 PMCID: PMC10933811 DOI: 10.21053/ceo.2023.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
OBJECTIVES As cochlear implantation (CI) experiences rapid innovations and its indications expand, the characteristics of revision CI (RCI) are evolving. This study investigated changes in the RCI profile and explored their clinical implications. METHODS A retrospective chart review was conducted of all CIs performed at a tertiary medical institution between October 2001 and January 2023. The rates of and reasons for RCI were evaluated in relation to the manufacturer and device model. Kaplan-Meier analysis was employed to examine cumulative and device survival curves. Cumulative and device survival rates were additionally analyzed based on age group, period of primary CI, and manufacturer. A Cox proportional hazards model was employed to evaluate the association between RCI and the device manufacturer. RESULTS Among 1,430 CIs, 73 (5.1%) required RCI. The predominant reason for RCI was device failure (40 of 73 RCIs [54.8%]), with an overall device failure rate of 2.8%. This was followed by flap-associated problems and migration (nine of 73 RCIs each [12.3%]). Flap retention issues emerged as a new cause in three cases (two involving the CI 632 and one involving the SYNCHRONY 2 implant), and six instances of electrode tip fold-over arose (four for the CI 600 series and two for the CI 500 series). The overall 10-year cumulative and device survival rates were 93.4% and 95.8%, respectively. After excluding models with recall issues, significant differences in cumulative (P =0.010) and device (P =0.001) survival rates were observed across manufacturers. CONCLUSION While the overall CI survival rate is stable, device failure persists as the predominant reason for RCI. Moreover, the types of complications leading to revision (including issues with flap retention and electrode tip fold-over) have shifted, particularly for newer implant models. Given the clinical importance of device failure and subsequent reoperation, clinicians should remain informed about and responsive to these trends.
Collapse
Affiliation(s)
- Bokhyun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Subi Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Doyun Kim
- Hearing Research Laboratory, Samsung Medical Center, Seoul, Korea
| | - Young Sang Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Hearing Research Laboratory, Samsung Medical Center, Seoul, Korea
| | - Il Joon Moon
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Hearing Research Laboratory, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
3
|
Greisiger R, Bester C, Sørensen T, Korslund H, Bunne M, O'Leary S, Jablonski GE. Intraoperative Measured Electrocochleography and Fluoroscopy Video to Detect Cochlea Trauma. Otol Neurotol 2024; 45:36-45. [PMID: 38085760 DOI: 10.1097/mao.0000000000004055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
HYPOTHESIS Gross electrode movements detected with intraoperative, real-time X-ray fluoroscopy will correlate with fluctuations in cochlear output, as measured with intraoperative electrocochleography (ECochG). BACKGROUND Indications for cochlear implantation (CI) are expanding to include patients with residual hearing; however, implant recipients often lose residual hearing after CI. The objective of this study was to identify probable traumatic events during implantation by combining electrophysiological monitoring of cochlear function with simultaneous X-ray monitoring. The surgical timing of these apparently traumatic events was then investigated. METHODS For 19 adult patients (21 surgeries, 2 bilateral), the ECochG responses were measured during implantation of a cochlear nucleus slim modiolar electrode (CI532/CI632, Cochlear Ltd Australia Nucleus slim modiolar). Simultaneous fluoroscopy was performed, as well as a postoperative cone-beam computed tomography (CT) scan. For all patients, pre- and postoperative audiograms were recorded up to 1 year after surgery to record the loss of residual hearing. RESULTS Electrode insertions for 21 surgeries were successfully monitored. A drop in ECochG response was significantly correlated with reduced hearing preservation compared with patients with preserved responses throughout. Drops in the ECochG response were measured to occur during insertion, because of movement of the array after insertion was complete, including while sealing of the electrode array at the round window or coiling of the array lead within the mastoid cavity. In some patients, a reduction in cochlear output, resulting in poor ECochG response, was inferred to occur before the beginning of implantation. CONCLUSION The combination of perioperative ECochG measurements, microscope video, fluoroscopy, and postoperative CT scan may inform on what causes the loss of residual hearing after implantation. These findings will be used to improve the surgical procedure in future.
Collapse
Affiliation(s)
- Ralf Greisiger
- Department of Otorhinolaryngology and Head and Neck Surgery, Oslo University Hospital, Oslo, Norway
| | - Christofer Bester
- Department of Surgery-Otolaryngology, University of Melbourne, Melbourne, Australia
| | - Torquil Sørensen
- Department of Otorhinolaryngology and Head and Neck Surgery, Oslo University Hospital, Oslo, Norway
| | | | - Marie Bunne
- Department of Otorhinolaryngology and Head and Neck Surgery, Oslo University Hospital, Oslo, Norway
| | - Stephen O'Leary
- Department of Surgery-Otolaryngology, University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
4
|
Oh H, Kim Y, Lee SJ, Carandang M, Song JJ, Choi BY. Two Discrete Types of Tip Fold-Over in Cochlear Implantation Using Slim Modiolar Electrodes: Influence of Cochlear Duct Length on Tip Fold-Over. Otol Neurotol 2023; 44:1011-1014. [PMID: 37733985 DOI: 10.1097/mao.0000000000004022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
OBJECTIVE Precise electrode positioning is crucial for achieving optimal audiological outcomes in cochlear implantation. The slim modiolar electrode (SME), a thin, flexible, and precurved electrode, exhibits favorable modiolar proximity. However, tip fold-over can affect optimal electrode placement. Herein, we share our experiences with tip fold-over in SMEs and present an analysis of conditions that may predispose to tip fold-over. STUDY DESIGN Retrospective medical record review. PATIENTS In total, 475 patients (671 ears) underwent cochlear implantation using SMEs (Nucleus CI532 or CI632 from Cochlear) performed by a single surgeon at a tertiary center between June 14, 2018, and December 1, 2022. INTERVENTIONS Intraoperative x-ray scans (cochlear view), operative records, and cochlear duct length (CDL) were reviewed. MAIN OUTCOME MEASURES Tip fold-over patterns on plain x-ray images (proximal versus distal). RESULTS Electrode tip fold-over was observed in 18 (2.7%) of the 671 ears with SMEs. This fold-over occurred more frequently in cases with long CDL (>36 mm). Among the 14 cases with available initial x-rays before correction of the tip fold-over, half were classified as proximal and the other half as distal. A predilection for proximal tip fold-over was found in those with a CDL of 36 mm or longer, and longer CDLs were observed for proximal cases than for distal cases. Our pilot data suggest that identifying the type of tip fold-over can aid in correcting it more efficiently. CONCLUSIONS Tip fold-over of SME does not occur uniformly and is more common in ears with long CDL. This tendency is particularly pronounced for the proximal type of tip fold-over. Therefore, preoperative measurement of the CDL and meticulous examination of intraoperative imaging are essential for customized correction.
Collapse
Affiliation(s)
- Heonjeong Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yehree Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seung Jae Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Marge Carandang
- Department of Otorhinolaryngology-Head and Neck Surgery, Department of Otorhinolaryngology-Head and Neck Surgery, Tondo Medical Center, Metro Manila, Philippines
| | | | | |
Collapse
|
5
|
Smetak MR, Riojas KE, Sharma RK, Labadie RF. Beyond the phantom: Unroofing the scala vestibuli in a fresh temporal bone as a model for cochlear implant insertion experiments. J Neurosci Methods 2022; 382:109710. [PMID: 36207005 DOI: 10.1016/j.jneumeth.2022.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Miriam R Smetak
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Ave S, Nashville, TN 37232, United States.
| | - Katherine E Riojas
- Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place PMB 401592, Nashville, TN 37240-1592, United States
| | - Rahul K Sharma
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Ave S, Nashville, TN 37232, United States
| | - Robert F Labadie
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Ave S, Nashville, TN 37232, United States; Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place PMB 401592, Nashville, TN 37240-1592, United States
| |
Collapse
|
6
|
Leblans M, Zarowski A, Molisz A, van Dinther J, Dedeyne J, Lerut B, Kuhweide R, Offeciers E. Cochlear implant electrode array tip-foldover detection by electrode voltage telemetry. Cochlear Implants Int 2022:1-12. [DOI: 10.1080/14670100.2022.2148890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Marc Leblans
- European Institute for ORL, GZA Sint-Augustinus, Antwerp, Belgium
| | - Andrzej Zarowski
- European Institute for ORL, GZA Sint-Augustinus, Antwerp, Belgium
| | - Andrzej Molisz
- Department of Family Medicine, Medical University of Gdansk, Gdańsk, Poland
| | | | - Janne Dedeyne
- ENT Department, AZ Sint-Jan Brugge-Oostende, Brugge, Belgium
| | - Bob Lerut
- ENT Department, AZ Sint-Jan Brugge-Oostende, Brugge, Belgium
| | - Rudolf Kuhweide
- ENT Department, AZ Sint-Jan Brugge-Oostende, Brugge, Belgium
| | - Erwin Offeciers
- European Institute for ORL, GZA Sint-Augustinus, Antwerp, Belgium
| |
Collapse
|
7
|
Matsumoto N, Akagi-Tsuchihashi N, Noda T, Komune N, Nakagawa T. Orientation of the Cochlea From a Surgeon's Perspective. OTOLOGY & NEUROTOLOGY OPEN 2022; 2:e017. [PMID: 38516627 PMCID: PMC10950153 DOI: 10.1097/ono.0000000000000017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 03/23/2024]
Abstract
Background One of the mechanisms that cause tip fold-over is a misalignment between the electrode array's coiling direction and the cochlea's curving direction. Objectives We reviewed surgical videos and computed tomography (CT) datasets of the patients who underwent cochlear implantation procedures from January 2010 to December 2021, paying particular attention to the cochlea's orientation in the surgeon's microscopic view. Methods CT dataset and video recordings were analyzed to measure the "slope angle," which is the angle between the cochlea's coiling plane and the horizontal plane. Results There were 220 cases that met the criteria and completed the analysis. The mean slope angle was 12.1° ± 9.5°, with a minimum of -9.4° and maximum of 44.6°. However, each surgeon had a favored slope angle range. Conclusion Understanding the slope angle and making an effort to reduce the chance of misalignment during electrode insertion may help prevent tip fold-over of slim perimodiolar electrode arrays.
Collapse
Affiliation(s)
- Nozomu Matsumoto
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nana Akagi-Tsuchihashi
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Teppei Noda
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noritaka Komune
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Assessing the Placement of the Cochlear Slim Perimodiolar Electrode Array by Trans Impedance Matrix Analysis: A Temporal Bone Study. J Clin Med 2022; 11:jcm11143930. [PMID: 35887693 PMCID: PMC9317462 DOI: 10.3390/jcm11143930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 01/25/2023] Open
Abstract
New cochlear implant (CI) electrode arrays provide softer insertion dynamics; however, due to their high flexibility, the possibilities of fold-overs or intraoperative displacements must be taken into account. The position of each individual electrode can only be determined by using high-resolution computed tomography or cone-beam CT. The trans-impedance matrix test (TIM) is an electrophysiological method based on electric field imaging that can provide images of electrode position and electrode folding. Objective: In this experimental research, we evaluated the result of TIM as a method of monitoring cochlear insertion for a precurved slim modiolar electrode array in fresh human temporal bones by analyzing the transimpedance matrix patterns and their correlation with electrode position using high-resolution computed tomography. Material and Methods: Sixteen slim modiolar electrode arrays were inserted into eight fresh Human Temporal Bones. Eight electrodes were inserted according to the correct methodology of insertion, and eight were intentionally folded over. After all insertions, a trans-impedance matrix analysis and a Cone Beam CT (CBCT) were performed in each temporal bone. Results: If we correlated the TIM patterns with the radiological electrode position, we observed that better electrode intracochlear positions indicated more “homogeneous” TIM patterns (intracochlear voltage dropped monotonically as the distance between stimulation and recording contact increased, both toward the apex and toward the base). A correlation where fold-over was detected in the TIM results was found in all eight temporal bone radiological findings. Conclusions: Trans-Impedance Matrix patterns were correlated with the radiological CI electrode position. When a tip fold-over appeared, a matrix with a secondary ridge in addition to the primary ridge was observed in all cases. TIM can be an effective method in the control of electrode positioning.
Collapse
|
9
|
Kim Y, Kim Y, Kim YS, Lee SY, Choi BY. Tight modiolar proximity and feasibility of slim modiolar cochlear implant electrode array insertion in diverse etiologies of hearing loss. Eur Arch Otorhinolaryngol 2021; 279:3899-3909. [PMID: 34718854 DOI: 10.1007/s00405-021-07150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE To report on our experience with the slim modiolar electrode (SME) especially focusing on the wide range of etiologies including inner ear anomalies, tumors, ossifications, and even revision surgeries. METHODS All the cochlear implantation cases performed from June 2018 to September 2019 by a single surgeon was prospectively recruited. The molecular/radiological etiology of hearing loss, intraoperative outcomes, and radiographic studies of cases where the SME was implanted was reviewed to evaluate compatibility of SME for the wide range of etiologies. For cases where SME replaced the other electrode as a revision, audiologic assessment was also made. RESULTS Among the 99 ears implanted during the study period, the SME was successfully implanted in 86 ears. These SME cases comprised inner ear anomaly/cochear nerve deficiency (n = 21) including cochlear hypoplasia type IV with the modiolus, intracochlear schwannoma (n = 1), far advanced otosclerosis (n = 1) and 7 revision cases. The SME was successfully used in 7 revision surgeries to replace the existing electrode. Shorter spiral diameter and decreased intracochlear position index for SME was found compared with their previous electrodes. Four out of the 6 patients who received revision implantation showed better speech perception after their surgeries. CONCLUSION The SME can be implanted in any cases unless the integrity of the modiolus is totally compromised. Due to its slim design and tight modiolar-hugging feature, good functional outcome can also be anticipated. Additionally, it is suitable for revision surgeries possibly allowing better hearing outcomes which may be attributed to its closer proximity to the modiolus.
Collapse
Affiliation(s)
- Yehree Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, Seoul, 463-707, Korea
| | - Yoonjoong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungbuk National University Hospital, Cheongju, Korea
| | - Young Seok Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, Seoul, 463-707, Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, Seoul, 463-707, Korea.
| |
Collapse
|
10
|
Hou L, Du X, Boulgouris NV, Hafeez N, Coulson C, Irving R, Begg P, Brett P. A Capacitive Cochlear Implant Electrode Array Sensing System to Discriminate Fold-Over Pattern. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:3685-3696. [PMID: 34407380 DOI: 10.1044/2021_jslhr-21-00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Purpose During insertion of the cochlear implant electrode array, the tip of the array may fold back on itself and can cause serious complications to patients. This article presents a sensing system for cochlear implantation in a cochlear model. The electrode array fold-over behaviors can be detected by analyzing capacitive information from the array tip. Method Depending on the angle of the array tip against the cochlear inner wall when it enters the cochlear model, different insertion patterns of the electrode array could occur, including smooth insertion, buckling, and fold-over. The insertion force simulating the haptic feedback for surgeons and bipolar capacitance signals during the insertion progress were collected and compared. The Pearson correlation coefficient (PCC) was applied to the collected capacitive signals to discriminate the fold-over pattern. Results Forty-six electrode array insertions were conducted and the deviation of the measured insertion force varies between a range of 20% and 30%. The capacitance values from electrode pair (1, 2) were recorded for analyzing. A threshold for the PCC is set to be 0.94 that can successfully discriminate the fold over insertions from the other two types of insertions, with a success rate of 97.83%. Conclusions Capacitive measurement is an effective method for the detection of faulty insertions and the maximization of the outcome of cochlear implantation. The proposed capacitive sensing system can be used in other tissue implants in vessels, spinal cord, or heart.
Collapse
Affiliation(s)
- Lei Hou
- Brunel University London, United Kingdom
| | - Xinli Du
- Brunel University London, United Kingdom
| | | | | | - Chris Coulson
- Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham, United Kingdom
| | - Richard Irving
- Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham, United Kingdom
| | - Philip Begg
- Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham, United Kingdom
| | - Peter Brett
- University of Southern Queensland, Toowoomba, Australia
| |
Collapse
|
11
|
Li J, Wu Y, Zhuo J, Wang Z. Modeling and simulation of cochlear perimodiolar electrode based on composite spring-mass model. Comput Methods Biomech Biomed Engin 2021; 25:290-297. [PMID: 34263671 DOI: 10.1080/10255842.2021.1950145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This paper proposes, a method for the physical modeling of the perimodiolar electrode, particularly for the process of recovering its preset shape with the guide wire drawn out, based on the composite spring-mass model by employing the virtual-volumetric spring inspired from the traditional spring-mass model. Simulation experiments of modeling and virtual insertion of perimodiolar electrode were carried out. The results indicated that the mean and standard deviation of the difference between the local deformation angles of the simulated and measured sets of mass points, (1, 2, 3), (2, 3, 4), …, (13, 14, 15), were 6.34° and 5.98°, respectively. Additionally, the physical model of the perimodiolar electrode can reflect the overall morphological changes of the real perimodiolar electrode.
Collapse
Affiliation(s)
- Jianjun Li
- College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, China
| | - Yue Wu
- College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, China
| | - Jianye Zhuo
- College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, China
| | - Zuo Wang
- College of Artificial Intelligence and Innovation, Ma'anshan University, Ma'anshan, China
| |
Collapse
|
12
|
Trecca EMC, Adunka OF, Mattingly JK, Hiss MM, Cassano M, Malhotra PS, Riggs WJ. Electrocochleography Observations in a Series of Cochlear Implant Electrode Tip Fold-Overs. Otol Neurotol 2021; 42:e433-e437. [PMID: 33196531 DOI: 10.1097/mao.0000000000003008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Tip fold-over is a rare but serious complication of cochlear implant (CI) surgery. The purpose of this study was to present intraoperative electrocochleography (ECochG) observations in a series of CI electrode tip fold-overs. PATIENTS Five pediatric subjects undergoing CI surgery through a round window (RW) approach with a perimodiolar electrode array, who were diagnosed with either auditory neuropathy spectrum disorder or enlarged vestibular aqueduct. INTERVENTIONS Intraoperative RW ECochG during CI surgery: tone burst stimuli were presented from 95 to 110 dB SPL. MAIN OUTCOME MEASURES Magnitude and phase characteristics of ECochG responses obtained intraoperatively before and immediately after electrode insertion were examined for patients with and without tip fold-over. RESULTS Three subjects presented with tip fold-over and two formed the control group. Among fold-over cases, one participant exhibited an inversion in the starting phase of the cochlear microphonic response and a decrease in spectral magnitude from pre- to postinsertion. Both subjects who did not exhibit a change in phase had an increase in the ECochG-total response (ECochG-TR) magnitude. No case in the control group exhibited a change in starting phase. In regard to the ECochG-TR, all controls showed a decrease in the magnitude. CONCLUSIONS Despite the small number of patients, heterogeneous ECochG response patterns were observed within the fold-over group. Though these results are not conclusive, they can serve as a framework to begin to understand ECochG's utility in detecting intraoperative tip fold-over.
Collapse
Affiliation(s)
- Eleonora M C Trecca
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Otolaryngology - Head and Neck Surgery, University Hospital of Foggia, Foggia, Italy
| | - Oliver F Adunka
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jameson K Mattingly
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Meghan M Hiss
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michele Cassano
- Department of Otolaryngology - Head and Neck Surgery, University Hospital of Foggia, Foggia, Italy
| | - Prashant S Malhotra
- Department of Otolaryngology - Head and Neck Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - William J Riggs
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
13
|
Transimpedance Matrix (TIM) Measurement for the Detection of Intraoperative Electrode Tip Foldover Using the Slim Modiolar Electrode: A Proof of Concept Study. Otol Neurotol 2021; 42:e124-e129. [PMID: 32941298 DOI: 10.1097/mao.0000000000002875] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study is to report on our preliminary experience with Transimpedance Matrix (TIM)-measurement for the detection of cochlear implant electrode tip foldovers compared with intraoperative imaging in patients implanted with the slim modiolar electrode (SME). STUDY DESIGN Proof of concept study. SETTING Tertiary university referral center. PATIENTS Twenty five ears (in 22 patients) implanted consecutively with the SME. INTERVENTIONS Following cochlear implantation, intraoperative TIM-measurement and fluoroscopy were performed. One week postoperatively, the electrode position was evaluated using Computed Tomography (CT)-imaging. MAIN OUTCOME MEASURES Electrode array tip foldover. RESULTS Electrode array tip foldover occurred in three of the 25 cochlear implantations performed (12%). In each case, the foldover was detected by both TIM and fluoroscopy, leading to reposition and correct intracochlear placement of the array. CONCLUSIONS TIM-measurement is a promising method for the intraoperative detection of an electrode array tip foldover. The TIM-tool with intuitive heatmap display is easy to use, fast, and readily available to clinics using TIM-software in the operating theatre.
Collapse
|
14
|
Jwair S, Prins A, Wegner I, Stokroos RJ, Versnel H, Thomeer HGXM. Scalar Translocation Comparison Between Lateral Wall and Perimodiolar Cochlear Implant Arrays - A Meta-Analysis. Laryngoscope 2020; 131:1358-1368. [PMID: 33159469 PMCID: PMC8246990 DOI: 10.1002/lary.29224] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022]
Abstract
Objectives/Hypothesis Two types of electrode arrays for cochlear implants (CIs) are distinguished: lateral wall and perimodiolar. Scalar translocation of the array can lead to intracochlear trauma by penetrating from the scala tympani into the scala vestibuli or scala media, potentially negatively affecting hearing performance of CI users. This systematic review compares the lateral wall and perimodiolar arrays with respect to scalar translocation. Study Design Systematic review. Methods PubMed, Embase, and Cochrane databases were reviewed for studies published within the last 11 years. No other limitations were set. All studies with original data that evaluated the occurrence of scalar translocation or tip fold‐over (TF) with postoperative computed tomography (CT) following primary cochlear implantation in bilateral sensorineuronal hearing loss patients were considered to be eligible. Data were extracted independently by two reviewers. Results We included 33 studies, of which none were randomized controlled trials. Meta‐analysis of five cohort studies comparing scalar translocation between lateral wall and perimodiolar arrays showed that lateral wall arrays have significantly lower translocation rates (7% vs. 43%; pooled odds ratio = 0.12). Translocation was negatively associated with speech perception scores (weighted mean 41% vs. 55%). Tip fold‐over of the array was more frequent with perimodiolar arrays (X2 = 6.8, P < .01). Conclusions Scalar translocation and tip fold‐overs occurred more frequently with perimodiolar arrays than with lateral wall arrays. In addition, translocation of the array negatively affects hearing with the cochlear implant. Therefore, if one aims to minimize clinically relevant intracochlear trauma, lateral wall arrays would be the preferred option for cochlear implantation. Laryngoscope, 131:1358–1368, 2021
Collapse
Affiliation(s)
- Saad Jwair
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Adrianus Prins
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Inge Wegner
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Hans G X M Thomeer
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Radiological evaluation of a new straight electrode array compared to its precursors. Eur Arch Otorhinolaryngol 2020; 278:3707-3714. [PMID: 33090276 PMCID: PMC8382647 DOI: 10.1007/s00405-020-06434-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/10/2020] [Indexed: 11/24/2022]
Abstract
Objective The aim of this study is to examine electrode array coverage, scalar position and dislocation rate in straight electrode arrays with special focus on a new electrode array with 26 mm in lengths. Study design Retrospective study. Setting Tertiary academic center. Patients 201 ears implanted between 2013 and 2019. Main outcome measures We conducted a comparative analysis of patients implanted with lateral wall electrode arrays of different lengths (F24 = MED-EL Flex24, F26 = MED-EL Flex26, F28 = MED-EL Flex28 and F31.5 = MED-EL FlexSoft). Cone beam computed tomography was used to determine electrode array position (scala tympani (ST) versus scala vestibuli (SV), intracochlear dislocation, position of dislocation and insertion angle). Results Study groups show no significant differences regarding cochlear size which excludes influences by cochlear morphology. As expected, the F24 showed significant shorter insertion angles compared to the longer electrode arrays. The F26 electrode array showed no signs of dislocation or SV insertion. The electrode array with the highest rate of ST dislocations was the F31.5 (26.3%). The electrode array with the highest rates of SV insertions was the F28 (5.75%). Most of the included electrode arrays dislocate between 320° and 360° (mean: 346.4°; range from 166° to 502°). Conclusion The shorter F24 and the new straight electrode array F26 show less or no signs of scalar dislocation, neither for round window nor for cochleostomy insertion than the longer F28 and the F31.5 array. As expected, the cochlear coverage is increasing with length of the electrode array itself but with growing risk for scalar dislocation and with the highest rates of dislocation for the longest electrode array F31.5. Position of intracochlear dislocation is in the apical cochlear part in the included lateral wall electrode arrays.
Collapse
|
16
|
Widmann G, Dejaco D, Luger A, Schmutzhard J. Pre- and post-operative imaging of cochlear implants: a pictorial review. Insights Imaging 2020; 11:93. [PMID: 32803542 PMCID: PMC7429612 DOI: 10.1186/s13244-020-00902-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022] Open
Abstract
Cochlear implants are increasingly used to treat sensorineural hearing disorders in both children and adults. Pre-operative computed tomography and magnetic resonance imaging play a pivotal role in patient selection, to rule out findings that preclude surgery or identify conditions which may have an impact on the surgical procedure. The post-operative position of the electrode array within the cochlea can be reliably identified using cone-beam computed tomography. Recognition of scalar dislocation, cochlear dislocation, electrode fold, and malposition of the electrode array may have important consequences for the patient such as revision surgery or adapted fitting.
Collapse
Affiliation(s)
- Gerlig Widmann
- Department of Radiology, Medical University of Innsbruck, Anichstr. 35, A-6020, Innsbruck, Austria.
| | - Daniel Dejaco
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Luger
- Department of Radiology, Medical University of Innsbruck, Anichstr. 35, A-6020, Innsbruck, Austria
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Abstract
INTRODUCTION A modern cochlear implant electrode array design must combine: improved surgical ease of use, structure preservation, particularly important for pediatric application, stable position within the cochlea over time, and a meaningful balance between hearing preservation against addressing sufficient cochlear tissue to support electrical-only hearing. The aim of this study was to investigate a new lateral wall electrode array design from Advanced Bionics on human temporal bones (TBs). METHODS Ten fresh-frozen TBs were implanted with the SlimJ electrode array via the round window. The electrode array is 23 mm long, with a cross-section varying from 0.25 × 0.55 mm at the most apical contact to 0.6 × 0.8 mm at the proximal marker contact. To assess location of the electrode array, the TBs were postoperatively scanned using cone beam computed tomography, and histology was performed to assess intracochlear trauma (Grades 0-4). RESULTS All electrode arrays were considered easy to insert. The average insertion depth was 432 degrees measured from the round window with a range from 411 to 450 degrees azimuth. Nine out of 10 electrode arrays were inserted fully (<0.5 mm out of the cochlea), one electrode array was left 1.5 mm out of the cochlea. No translocations were observed in all 10 cochleae, slight touching of the basilar membrane at the distal portion of the array was observed in 50% of the cases. CONCLUSION The results from the new thin lateral wall electrode array from Advanced Bionics provided consistent scala tympani locations. No translocations were observed and almost all electrode arrays were fully inserted. These results are promising and the new electrode array will be further studied in clinical practice investigating hearing preservation capabilities and speech performance.
Collapse
|
18
|
Abstract
OBJECTIVE Incidence and clinical presentation of tip foldover during cochlear implantation (CI). STUDY DESIGN Retrospective case review. SETTING Tertiary referral university hospital. PATIENTS One thousand three hundred twenty CI recipients who underwent postoperative Stenvers view, digital computed tomography (CT), or digital volume tomography (DVT). MAIN OUTCOME MEASURE Tip foldover rates were evaluated with regard to perimodiolar (PM), lateral wall (LW), and mid-scalar (MS) electrode carriers; the electrode insertion angle was estimated and postoperative complications and the necessity for revisions were described. RESULTS One thousand three hundred twenty CI recipients (1,722 ears) had detailed surgery reports and postoperative imaging available for review. Tip foldover occurred in 15 ears (0.87%) with the highest rate (1.67%) for PM electrodes. In three patients tip foldover was accompanied by costimulation of the facial nerve and one patient reported vertigo. Eleven patients underwent revision surgery. In two of them revision was performed in the same surgical intervention due to abnormality in spread of excitation measurement. In four patients no revision was conducted due to uncompromised aided speech perception. CONCLUSION In a large academic center with experienced surgeons, tip foldover verified by CT/DVT arose at a rate of 0.87%. PM electrode carriers inherited the highest risk for this electrode malposition. Revision surgery was feasible in these cases.
Collapse
|
19
|
Electrophysiological detection of electrode fold-over in perimodiolar cochlear implant electrode arrays: a multi-center study case series. Eur Arch Otorhinolaryngol 2019; 277:31-35. [PMID: 31552525 DOI: 10.1007/s00405-019-05653-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/12/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE It is important for the surgeon to determine the position of the CI electrode array during and after its placement within the cochlea. Most preferably, this should be within the scala tympani to obtain the best audiological outcome. Thus, misplacement into the scala vestibuli or tip fold-over should be prevented. Since there are different ways to ensure proper positioning of the electrode array within the scala tympani (e.g., intraoperative radiography, electrophysiological recordings), our study was aimed at detecting intraoperative electrophysiologic characteristics to better understand the mechanisms of those electrode tip fold-overs. MATERIAL AND METHODS In a multi-centric, retrospective case-control series, patients with a postoperatively by radiography detected tip fold-over in perimodiolar electrodes were included. The point of fold-over (i.e., the electrode position) was determined and the intraoperative Auto-NRT recordings were analysed and evaluated. RESULTS Four patients were found to have an electrode tip fold-over (out of 85 implantees). Significant changes of the Auto-NRT recordings were not detected. All tip fold-overs occurred in the most apical part of the electrodes. DISCUSSION Cochlear implantation for hearing impaired patients plays a decisive role in modern auditory rehabilitation. Perimodiolar electrode arrays may fold over during the insertion and, hence, could have a negative impact on audiological outcome. Characteristic electrophysiologic changes to possibly predict this were not found in our series.
Collapse
|
20
|
Perenyi A, Toth F, Dimak B, Nagy R, Schoerg P, Jori J, Kiss JG, Sprinzl G, Csanady M, Rovo L. Electrophysiological measurements with electrode types of different perimodiolar properties and the same cochlear implant electronics - a retrospective comparison study. J Otolaryngol Head Neck Surg 2019; 48:46. [PMID: 31492190 PMCID: PMC6731597 DOI: 10.1186/s40463-019-0361-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/20/2019] [Indexed: 11/23/2022] Open
Affiliation(s)
- A Perenyi
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary.
| | - F Toth
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary
| | - B Dimak
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary
| | - R Nagy
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary
| | - P Schoerg
- Karl Landsteiner University Hospital of StPölten, Propst-Führer-Straße 4, 3100, St. Pölten, Austria
| | - J Jori
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary
| | - J G Kiss
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary
| | - G Sprinzl
- Karl Landsteiner University Hospital of StPölten, Propst-Führer-Straße 4, 3100, St. Pölten, Austria
| | - M Csanady
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary
| | - L Rovo
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary
| |
Collapse
|
21
|
The Pull-Back Technique for the 532 Slim Modiolar Electrode. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6917084. [PMID: 31240221 PMCID: PMC6556256 DOI: 10.1155/2019/6917084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/14/2019] [Accepted: 04/28/2019] [Indexed: 11/18/2022]
Abstract
Introduction The distance between the modiolus and the electrode array is one factor that has become the focus of many discussions and studies. Positioning the electrode array closer to the spiral ganglion with the goal of reducing the current spread has been shown to improve hearing outcomes. The perimodiolar electrode arrays can be complemented with a surgical manoeuvre called the pull-back technique. This study focuses its attention on the recently developed 532 slim modiolar electrode. Objective To investigate the intracochlear movements and pull-back technique for the 532 slim modiolar electrode. Material and Methods A decapping procedure of the cochlea was performed on 5 temporal bones. The electrode array was inserted, and the intracochlear movements were microscopically examined and digitally captured. Three situations were analysed: the initial insertion, the overinsertion, and the pull-back position. The position of the three white markers of the electrode array in relation to the round window (RW) was evaluated while performing these three actions. Results The initial insertion achieved an acceptable perimodiolar position of the electrode array, but a gap was still observed between the mid-portion of the array and the modiolus (the first white marker was seen in the RW). When we inserted the electrode more deeply, the mid-portion of the array was pushed away from the modiolus (the second and third white markers were seen in the RW). After applying the pull-back technique, the gap observed during the initial insertion disappeared, resulting in an optimal perimodiolar position (the first white marker was once again visible in the RW). Conclusion This temporal bone study demonstrated that when applying the pull-back technique for the 532 slim modiolar electrode, a closer proximity to the modiolus was achieved when the first white marker of the electrode array was visible in the round window.
Collapse
|
22
|
Gomez Serrano M, Patel S, Harris R, Selvadurai D. Initial surgical and clinical experience with the Nucleus CI532 slim modiolar electrode in the UK. Cochlear Implants Int 2019; 20:207-216. [PMID: 30947632 DOI: 10.1080/14670100.2019.1597461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The goal of this work is to describe the first experience in the UK with the slim pre-curved perimodiolar electrode Nucleus CI532 in a continuous series of patients in terms of surgical and clinical reliability and early performance outcomes. METHOD In this retrospective review we describe the complication rate (including electrode array tip fold-over), NRT thresholds, hearing preservation, power efficiency and CI performance outcomes in a continuous series of 40 cochlear implants CI532 performed between October 2016 and November 2017 in 17 adults and 13 children with severe to profound hearing loss. RESULTS Preliminary data from these groups reveals some low-frequency hearing preservation in the CI532 group although none of the patients were conventional hearing preservation candidates. NRT thresholds, power efficiency, and BKB sentences in quiet were measured at 3 and 6 months post activation. There were no significant differences in these results. The average BKB score in quiet increases from 22% pre-operatively to 58% at 3 months and 70% at 6 months. In addition, although hearing preservation was not an objective, low-frequency thresholds were preserved in 20% of cases at 3 and 6 months post-operatively. Complications were observed in 5 cases, one case with non-device related aerocoele and four related to the device array: two cases of tip roll over, one case of the electrode array being placed extra-cochlea, and one case with the electrode buckling into the middle ear. The last 2 cases were dealt with per-operatively. DISCUSSION Our preliminary results with the CI532 implant indicate that it may be reliably placed with standard surgical techniques but care is needed during the deployment of the electrode. Further initial data suggest that switch on and early electrophysiological measures are comparable to the existing CI 512 device. However whilst preliminary, our data suggest that it may be possible to use this electrode for hearing preservation. However, further studies are required to determine its definitive advantage over other electrode designs. CONCLUSION CI532 is a reliable device offering good initial results and could be an option for hearing preservation although further studies are required.
Collapse
Affiliation(s)
- Manuel Gomez Serrano
- a St George's Auditory Implant Service, St Georges NHS Foundation Trust London , London , UK
| | - Sharmila Patel
- a St George's Auditory Implant Service, St Georges NHS Foundation Trust London , London , UK
| | - Robert Harris
- a St George's Auditory Implant Service, St Georges NHS Foundation Trust London , London , UK
| | - David Selvadurai
- a St George's Auditory Implant Service, St Georges NHS Foundation Trust London , London , UK
| |
Collapse
|