1
|
Sanmark E, Marjanen P, Virtanen J, Aaltonen K, Tauriainen S, Österlund P, Mäkelä M, Saari S, Roine A, Rönkkö T, Vartiainen VA. Identifying viral infections through analysis of head space volatile organic compounds. J Breath Res 2024; 19:016004. [PMID: 39437816 DOI: 10.1088/1752-7163/ad89f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Volatile organic compounds (VOCs) produced by human respiratory cells reflect metabolic and pathophysiological processes which can be detected with the use of modern technology. Analysis of exhaled breath or indoor air may potentially play an important role in screening of upper respiratory tract infections such as COVID-19 or influenza in the future. In this experimental study, air samples were collected and analyzed from the headspace of anin vitrocell culture infected by selected pathogens (influenza A H1N1 and seasonal coronaviruses OC43 and NL63). VOCs were measured with a real-time proton-transfer-reaction time-of-flight mass spectrometer and a differential mobility spectrometer. Measurements were performed every 12 h for 7 d. Non-infected cells and cell culture media served as references. In H1N1 and OC43 we observed four different VOCs which peaked during the infection. Different, individual VOCs were also observed in both infections. Activity began to clearly increase after 2 d in all analyses. We did not see increased VOC production in cells infected with NL63. VOC analysis seems to be suitable to differentiate the infected cells from those which are not infected as well as different viruses, from another. In the future, this could have practical value in both individual diagnostics and indoor environment screening.
Collapse
Affiliation(s)
- E Sanmark
- Department of Otorhinolaryngology and Phoniatrics-Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - P Marjanen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - J Virtanen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine And Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - K Aaltonen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine And Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Tauriainen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - P Österlund
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - M Mäkelä
- Olfactomics Oy, Tampere, Finland
| | - S Saari
- Tampere University of Applied Sciences, Tampere, Finland
| | - A Roine
- Olfactomics Oy, Tampere, Finland
| | - T Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - V A Vartiainen
- Heart and Lung center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
2
|
Cui N, Zhu X, Zhao C, Meng C, Sha J, Zhu D. Pericyte loss leads to microvessel remodeling and nasal polyp formation. Acta Otolaryngol 2023; 143:876-886. [PMID: 38148737 DOI: 10.1080/00016489.2023.2276345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/17/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) may be caused by increased vascular permeability and inflammatory cell leakage in the subepithelial tissue. AIMS/OBJECTIVES The aim of this study is to clarify the role of pericytes in tissue edema, microvessel dysfunction and vascular remodeling mechanisms in patients of CRS with nasal polyps (CRSwNP). MATERIAL AND METHODS A total of 63 tissue samples were collected, including 42 CRSwNP samples (22 eosinophilic CRSwNP (eCRSwNP) and 20 non-eosinophilic CRSwNP (non-eCRSwNP) samples) and 21 samples of CRS without nasal polyps (CRSsNP). The samples were stained by immunofluorescence to measure microvessel density (MVD) and microvessel pericyte coverage index (MPI). RESULTS We found that the albumin expression in the eCRSwNP group was significantly increased (p < .05). The MPI was significantly decreased (p <.05). There was a significant negative correlation between the MPI and the plasma albumin level (r=-0.82, p < .05). The MPI was negatively correlated with eosinophilic count (r=-0.77, p < .05). In the eCRSwNP group, the expressions of IL-4, Ang-1 and Ang-2 were increased compared with those in the control group. CONCLUSIONS AND SIGNIFICANCE Pericyte loss may induce microvessel dysfunction, affect the development of interstitial edema and eosinophilic exosmosis in eCRSwNP, and contribute to the formation and maintenance of nasal polyps.
Collapse
Affiliation(s)
- Na Cui
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuewei Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chen Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Cuida Meng
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jichao Sha
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Wijbenga N, de Jong NL, Hoek RA, Mathot BJ, Seghers L, Aerts JG, Bos D, Manintveld OC, Hellemons ME. Detection of Bacterial Colonization in Lung Transplant Recipients Using an Electronic Nose. Transplant Direct 2023; 9:e1533. [PMID: 37745948 PMCID: PMC10513211 DOI: 10.1097/txd.0000000000001533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background Bacterial colonization (BC) of the lower airways is common in lung transplant recipients (LTRs) and increases the risk of chronic lung allograft dysfunction. Diagnosis often requires bronchoscopy. Exhaled breath analysis using electronic nose (eNose) technology may noninvasively detect BC in LTRs. Therefore, we aimed to assess the diagnostic accuracy of an eNose to detect BC in LTRs. Methods We performed a cross-sectional analysis within a prospective, single-center cohort study assessing the diagnostic accuracy of detecting BC using eNose technology in LTRs. In the outpatient clinic, consecutive LTR eNose measurements were collected. We assessed and classified the eNose measurements for the presence of BC. Using supervised machine learning, the diagnostic accuracy of eNose for BC was assessed in a random training and validation set. Model performance was evaluated using receiver operating characteristic analysis. Results In total, 161 LTRs were included with 80 exclusions because of various reasons. Of the remaining 81 patients, 16 (20%) were classified as BC and 65 (80%) as non-BC. eNose-based classification of patients with and without BC provided an area under the curve of 0.82 in the training set and 0.97 in the validation set. Conclusions Exhaled breath analysis using eNose technology has the potential to noninvasively detect BC.
Collapse
Affiliation(s)
- Nynke Wijbenga
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nadine L.A. de Jong
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Educational Program Technical Medicine, Leiden University Medical Center, Delft University of Technology and Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rogier A.S. Hoek
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bas J. Mathot
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leonard Seghers
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joachim G.J.V. Aerts
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Daniel Bos
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Olivier C. Manintveld
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Cardiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Merel E. Hellemons
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|