Guo WP, Rong ZB, Li YH, Fung YS, Gao GQ, Cai ZM. Microfluidic chip capillary electrophoresis coupled with electrochemiluminescence for enantioseparation of racemic drugs using central composite design optimization.
Electrophoresis 2013;
34:2962-9. [PMID:
24037989 DOI:
10.1002/elps.201300238]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 07/28/2013] [Accepted: 08/06/2013] [Indexed: 11/10/2022]
Abstract
Optimization based on central composite design (CCD) for enantioseparation of anisodamine (AN), atenolol (AT), and metoprolol (ME) in human urine was developed using a microfluidic chip-CE device. Coupling the flexible and wide working range of microfluidic chip-CE device to CCD for chiral separation of AN, AT, and ME in human urine, a total of 15 experiments is needed for the optimization procedure as compared to 75 experiments using the normal one variable at a time optimization. The optimum conditions obtained are found to be more robust as shown by the curvature effects of the interaction factors. The developed microfluidic chip-CE-ECL system with adjustable dilution ratios has been validated by satisfactory recoveries (89.5-99% for six enanotiomers) in urine sample analysis. The working range (0.3-600 μM), repeatability (3.1-4.9% RSD for peak height and 4.0-5.2% RSD for peak area), and detection limit (0.3-0.6 μM) of the method developed are found to meet the requirements for bedside monitoring of AN, AT, and ME in patients under critical conditions. In summary, the hyphenation of CCD with the microfluidic chip-CE device is shown to offer a rapid means for optimizing the working conditions on simultaneous separation of three racemic drugs using the microfluidic chip-CE device developed.
Collapse