Pen sensor made with silver nanoparticles decorating graphite-polyurethane electrodes to detect bisphenol-A in tap and river water samples.
MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020;
114:110989. [PMID:
32993994 DOI:
10.1016/j.msec.2020.110989]
[Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 12/30/2022]
Abstract
Rapid, on-site detection of emerging pollutants is critical for monitoring health threats and the environment, especially if performed through autonomous systems. In this paper, we report on a new design of a complete electrochemical system whose working (WE), auxiliary (AE) and reference (RE) electrodes were obtained on a pen (PEN Sensor) made with graphite:polyurethane (GPUE). Working electrodes were decorated with spherical, ca. 200 nm silver nanoparticles (AgNPs) reduced on graphite using the polyol method. Differential pulse voltammetry (DPV) was used to detect bisphenol-A (BPA) in a linear range from 2.5 to 15 μmol L-1 with detection limit of 0.24 μmol L-1. The PEN Sensor could also detect bisphenol-A in tap and river water samples, with satisfactory reproducibility and repeatability, while common interferents did not affect electrooxidation of bisphenol-A. The high sensitivity and rapid detection are suitable for real-time analysis and in loco monitoring of emerging pollutants. With their robustness and versatility, PEN Sensors such as those fabricated here may be integrated into futuristic smart robotic systems.
Collapse