1
|
Huo Y, Zhang S, Wu G, Shan H, Li Q, Deng T, Pan C. Rapid simultaneous determination of 7 fat-soluble vitamins in human serum by ultra high performance liquid chromatography tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5535-5544. [PMID: 37847399 DOI: 10.1039/d3ay01527k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Accurate detection of vitamins is critically important for clinical diagnosis, metabolomics and epidemiological studies. However, the amounts of different vitamins vary dramatically in human serum. It is a challenge to achieve simultaneous detection of multiple vitamins rapidly. Herein, we developed and validated a sensitive and specific method using ultra high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for simultaneous quantification of 7 fat-soluble vitamins (FSVs) across their physiological concentrations in serum for the first time, which was subjected to protein precipitation, liquid-liquid extraction to an organic phase, evaporation to dryness and reconstitution with acetonitrile. In the present procedure, retinol (vitamin A), ergocalciferol (25-OH-D2), cholecalciferol (25-OH-D3), α-tocopherol (vitamin E), phylloquinone (vitamin K1), menatetrenone-4 (MK-4), and menaquinone-7 (MK-7) were detected in one analytical procedure for the first time within 5.0 min by triple quadrupole tandem mass spectrometry. The limit of quantification (LOQ) for vitamin A was 10.0 ng mL-1, LOQs for 25-OH-D2 and 25-OH-D3 were 1.0 ng mL-1, LOQ for vitamin E was 100.0 ng mL-1, and LOQs for vitamin K1, MK-4 and MK-7 were 0.10 ng mL-1, respectively, with a correlation (R2) of 0.995-0.999. Recoveries ranged from 80.5% to 118.5% and the intra-day and inter-day coefficients of variance (CVs) were 0.72-8.89% and 3.2-9.0% respectively. The method was validated according to the European Medicines Agency (EMA) and U.S. Food and Drug guidelines and C62-A on bioanalytical methods, and was used for clinical routine determination.
Collapse
Affiliation(s)
- Yumei Huo
- Hangzhou Adicon Clinical Laboratories Co., Ltd, Hangzhou, China
| | - Shangqing Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Gaoping Wu
- Hangzhou Adicon Clinical Laboratories Co., Ltd, Hangzhou, China
| | - Hongbo Shan
- Hangzhou Adicon Clinical Laboratories Co., Ltd, Hangzhou, China
| | - Qianqian Li
- Waters Technologies (Beijing) Co., Ltd., Beijing, China
| | - Tongqing Deng
- Hangzhou Adicon Clinical Laboratories Co., Ltd, Hangzhou, China
| | - Chao Pan
- Hangzhou Adicon Clinical Laboratories Co., Ltd, Hangzhou, China
| |
Collapse
|
2
|
Absolute quantification of eleven A, D, E and K vitamers in human plasma using automated extraction and UHPLC-Orbitrap MS. Anal Chim Acta 2021; 1181:338877. [PMID: 34556212 DOI: 10.1016/j.aca.2021.338877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 11/22/2022]
Abstract
Fat-Soluble Vitamers [FSV] deficiencies and hypervitaminosis are associated with lifestyle diseases such as cardiovascular disease, diabetes, and cancer. Quantification of FSV and their metabolites in plasma has proved to be one of the most demanding analytical chemistry challenges. Current FSV quantification methods are compromises between breadth of coverage and sensitivity across the physiological range. Here, we developed and validated a sensitive, robust, semi-automated method using liquid-liquid extraction coupled with LC-ESI-MS/MS to quantify 11 FSV across their physiological concentrations in plasma. The addition of Phree® phospholipid removal plates as the last step in the extraction process reduced matrix effects, improving precision, recoveries, and the method's final sensitivity. This method can detect and quantify: retinol, retinoic acid, retinyl palmitate, 25 hydroxyvitamin D3 [25-OH-D3], 1-α-25-dihydroxy-D3, α-tocopherol, γ-tocopherol, α-tocotrienol, phylloquinone [K1], Menatetrenone [MK-4], and menaquinone-7 [MK-7].The Instrument Quantitation Limit [IQL]s for retinol (64.1 ng/mL), 25-OH-D3 (10.2 ng/mL), and α-tocopherol (3000 ng/mL) can detect clinical deficiencies. Our automated method will assist in the understanding of the complex interaction between these compounds and their possible role in health and disease.
Collapse
|
3
|
Mladěnka P, Macáková K, Kujovská Krčmová L, Javorská L, Mrštná K, Carazo A, Protti M, Remião F, Nováková L. Vitamin K - sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr Rev 2021; 80:677-698. [PMID: 34472618 PMCID: PMC8907489 DOI: 10.1093/nutrit/nuab061] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vitamin K is traditionally connected with blood coagulation, since it is needed for the posttranslational modification of 7 proteins involved in this cascade. However, it is also involved in the maturation of another 11 or 12 proteins that play different roles, encompassing in particular the modulation of the calcification of connective tissues. Since this process is physiologically needed in bones, but is pathological in arteries, a great deal of research has been devoted to finding a possible link between vitamin K and the prevention of osteoporosis and cardiovascular diseases. Unfortunately, the current knowledge does not allow us to make a decisive conclusion about such a link. One possible explanation for this is the diversity of the biological activity of vitamin K, which is not a single compound but a general term covering natural plant and animal forms of vitamin K (K1 and K2) as well as their synthetic congeners (K3 and K4). Vitamin K1 (phylloquinone) is found in several vegetables. Menaquinones (MK4–MK13, a series of compounds known as vitamin K2) are mostly of a bacterial origin and are introduced into the human diet mainly through fermented cheeses. Current knowledge about the kinetics of different forms of vitamin K, their detection, and their toxicity are discussed in this review.
Collapse
Affiliation(s)
- Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic. K. Macáková is with the Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republicv
| | - Kateřina Macáková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Kristýna Mrštná
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic. K. Macáková is with the Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republicv
| | - Michele Protti
- M. Protti is with the Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Fernando Remião
- F. Remião is with the UCIBIO-REQUIMTE, Laboratory of Toxicology, The Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, Porto, Portugal
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | |
Collapse
|
4
|
LC-MS/MS quantification of fat soluble vitamers - A systematic review. Anal Biochem 2020; 613:113980. [PMID: 33065116 DOI: 10.1016/j.ab.2020.113980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/12/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022]
Abstract
Fat soluble vitamers (FSV) are several biochemically diverse micronutrients essential for healthy development, growth, metabolism, and cell regulation. We cannot synthesize FSV completely or at the required concentrations. Deficiency or excess of FSV can result in many health problems. Plasma is the most accessible sample matrix for the quantification of FSV. However, due to its complexity and other analytical challenges (e.g., FSV sensitivity to light, oxygen, heat, pH, chemical heterogeneity, standard availability), developing a method for the simultaneous quantification of multiple FSV at physiological concentrations has been challenging. In this systematic review, we examine the parameters and criteria used in existing Liquid Chromatography with tandem Mass Spectrometry (LC-MS/MS) methods for FSV quantification to the extraction method, chromatographic resolution, matrix effects, and method validation as critical to a sensitive and robust method. We conclude that the final FSV method sensitivity is predominantly based on aforementioned criteria and future method development using LC-MS/MS will benefit from the application of this systematic review.
Collapse
|
5
|
Sazali NH, Alshishani A, Saad B, Chew KY, Chong MM, Miskam M. Salting-out assisted liquid-liquid extraction coupled with high-performance liquid chromatography for the determination of vitamin D3 in milk samples. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190952. [PMID: 31598260 PMCID: PMC6731698 DOI: 10.1098/rsos.190952] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/30/2019] [Indexed: 06/01/2023]
Abstract
In this study, salting-out assisted liquid-liquid extraction (SALLE) as a simple and efficient extraction technique followed by high-performance liquid chromatography (HPLC) was employed for the determination of vitamin D3 in milk samples. The sample treatment is based on the use of water-miscible acetonitrile as the extractant and acetonitrile phase separation under high-salt conditions. Under the optimum conditions, acetonitrile and ammonium sulfate were used as the extraction solvent and salting-out agent, respectively. The vitamin D3 extract was separated using Hypersil ODS (250x i.d 4.6 mm, 5 µm) HPLC column that was coupled with diode array detector. Vitamin D2 was used as internal standard (IS) to offset any variations in chromatographic conditions. The vitamin D3 and the IS were eluted in 18 min. Good linearity (r 2 > 0.99) was obtained within the range of 25-600 ng g-1 with the limit of detection of 15 ng g-1 and limit of quantification of 25 ng g-1. The validated method was applied for the determination of vitamin D3 in milk samples. The recoveries for spiked samples were from 94.4 to 113.5%.
Collapse
Affiliation(s)
- Nur Hidayah Sazali
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | | | - Bahruddin Saad
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Ker Yin Chew
- MYCO2 Laboratory Sdn Bhd, Lengkok Kikik 1, Taman Inderawasih, 13600 Pulau Pinang, Malaysia
| | - Moi Me Chong
- MYCO2 Laboratory Sdn Bhd, Lengkok Kikik 1, Taman Inderawasih, 13600 Pulau Pinang, Malaysia
| | - Mazidatulakmam Miskam
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| |
Collapse
|
6
|
Memon N, Qureshi T, Bhanger MI, Malik MI. Recent Trends in Fast Liquid Chromatography for Pharmaceutical Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180912125155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Liquid chromatography is the workhorse of analytical laboratories of pharmaceutical
companies for analysis of bulk drug materials, intermediates, drug products, impurities and
degradation products. This efficient technique is impeded by its long and tedious analysis procedures.
Continuous efforts of scientists to reduce the analysis time resulted in the development of three different
approaches namely, HTLC, chromatography using monolithic columns and UHPLC.
Methods:
Modern column technology and advances in chromatographic stationary phase including
silica-based monolithic columns and reduction in particle and column size (UHPLC) have not only
revolutionized the separation power of chromatographic analysis but also have remarkably reduced the
analysis time. Automated ultra high-performance chromatographic systems equipped with state-ofthe-
art software and detection systems have now spawned a new field of analysis, termed as Fast Liquid
Chromatography (FLC). The chromatographic approaches that can be included in FLC are hightemperature
liquid chromatography, chromatography using monolithic column, and ultrahigh performance
liquid chromatography.
Results:
This review summarizes the progress of FLC in pharmaceutical analysis during the period
from year 2008 to 2017 focusing on detecting pharmaceutical drugs in various matrices, characterizing
active compounds of natural products, and drug metabolites. High temperature, change in the mobile
phase, use of monolithic columns, new non-porous, semi-porous and fully porous reduced particle size
of/less than 3μm packed columns technology with high-pressure pumps have been extensively studied
and successively applied to real samples. These factors revolutionized the fast high-performance separations.
Conclusion:
Taking into account the recent development in fast liquid chromatography approaches,
future trends can be clearly predicated. UHPLC must be the most popular approach followed by the
use of monolithic columns. Use of high temperatures during analysis is not a feasible approach especially
for pharmaceutical analysis due to thermosensitive nature of analytes.
Collapse
Affiliation(s)
- Najma Memon
- National Centre of Excellence in Analytical Chemistry, Univeristy of Sindh, Jamshoro, Sindh, Pakistan
| | - Tahira Qureshi
- National Centre of Excellence in Analytical Chemistry, Univeristy of Sindh, Jamshoro, Sindh, Pakistan
| | - Muhammad Iqbal Bhanger
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Muhammad Imran Malik
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
7
|
Nannapaneni NK, Jalalpure SS, Muppavarapu R, Sirigiri SK. A sensitive and rapid UFLC-APCI-MS/MS bioanalytical method for quantification of endogenous and exogenous Vitamin K1 isomers in human plasma: Development, validation and first application to a pharmacokinetic study. Talanta 2017; 164:233-243. [DOI: 10.1016/j.talanta.2016.11.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
|
8
|
Abro K, Mahesar SA, Iqbal S, Perveen S. Quantification of malachite green in fish feed utilising liquid chromatography-tandem mass spectrometry with a monolithic column. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:827-32. [PMID: 24524279 DOI: 10.1080/19440049.2014.893398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The purpose of this study was to develop a rapid and sensitive method for the quantification of malachite green (MG) in fish feed using LC-ESI-MS/MS with a monolithic column as stationary phase. Fish feed was cleaned using ultrasonic assisted liquid-liquid extraction. The separation was achieved on a Chromolith® Performance RP-18e column (100 × 4.6 mm) using gradient mobile phase composition of methanol and 0.1% formic acid at the flow rate of 1.0 ml min⁻¹. The analyte was ionised using electrospray ionisation in positive mode. Mass spectral transitions were recorded in selected reaction monitoring (SRM) mode at m/z 329.78 → m/z 314.75 with a collision energy (CE) of 52% for MG. The system suitability responses were calculated for reproducibility tests of the retention time, number of theoretical plates and capacity factor. System validation was evaluated for precision, specificity and linearity of MG. The linearity and calibration graph was plotted in the range of 15.0-250 ng ml⁻¹ with the regression coefficient of >0.997. The lower limits of detection and quantification for MG were 0.55 and 1.44 ng ml⁻¹, respectively, allowing easy determination in fish feed with accuracy evaluated as a percentage recovery of 92.1% and precision determined as % CV of < 5. The method was also extended to the determination of MG in an actual fish feed. The sensitivity and selectivity of LC-ESI-MS/MS using monolithic column offers a valuable alternative to the methodologies currently employed for the quantification of MG in fish feeds.
Collapse
Affiliation(s)
- Kamran Abro
- a Pakistan Council of Scientific and Industrial Research Laboratories Complex , Pharmaceutical Research Center , Karachi Pakistan
| | | | | | | |
Collapse
|