1
|
Alternanthera philoxeroides extract as a corrosion inhibitor for steel in Cl3CCOOH solution. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
2
|
Sultanbawa Y, Smyth HE, Truong K, Chapman J, Cozzolino D. Insights on the role of chemometrics and vibrational spectroscopy in fruit metabolite analysis. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 3:100033. [PMID: 35415666 PMCID: PMC8991517 DOI: 10.1016/j.fochms.2021.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 12/03/2022]
Abstract
The use of vibrational spectroscopy combined with data analytics is discussed. The measure of bioactive compounds metabolites in fruit samples is presented. Advantages and limitations of these techniques are discussed.
The last three decades have demonstrated the ability of combining data analytics (e.g. big data, machine learning) with modern analytical instrumental techniques such as vibrational spectroscopy (VIBSPEC) (e.g. NIR, Raman, MIR) and sensing technologies (e.g. electronic noses and tongues, colorimetric sensors) to analyse, measure and monitor a wide range of properties and samples. Developments in instrumentation, hardware and software have placed VIBSPEC as a useful tool to quantify several bioactive compounds and metabolites in a wide range of fruit and plant samples. With the incorporation of hand-held and portable instrumentation, these techniques have been valuable for the development of in-field and high throughput applications, opened new frontiers of analysis in fruits and plants. This review will present and discuss some of the current applications on the use of VIBSPEC techniques combined with data analytics on the measurement bioactive compounds and plant metabolites in different fruit samples.
Collapse
Affiliation(s)
- Y Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD 4108, Australia.,Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - H E Smyth
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD 4108, Australia
| | - K Truong
- Nanobiotechnology Laboratory, School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - J Chapman
- Nanobiotechnology Laboratory, School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - D Cozzolino
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD 4108, Australia
| |
Collapse
|
3
|
Nipun TS, Khatib A, Ahmed QU, Nasir MHM, Supandi F, Taher M, Saiman MZ. Preliminary Phytochemical Screening, In Vitro Antidiabetic, Antioxidant Activities, and Toxicity of Leaf Extracts of Psychotria malayana Jack. PLANTS (BASEL, SWITZERLAND) 2021; 10:2688. [PMID: 34961160 PMCID: PMC8707723 DOI: 10.3390/plants10122688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/04/2022]
Abstract
Psychotria malayana Jack belongs to the Rubiacea and is widespread in Southeast Asian countries. It is traditionally used to treat diabetes. Despite its potential medicinal use, scientific proof of this pharmacological action and the toxic effect of this plant are still lacking. Hence, this study aimed to investigate the in vitro antidiabetic and antioxidant activities, toxicity, and preliminary phytochemical screening of P. malayana leaf extracts by gas chromatography-mass spectrometry (GC-MS) after derivatization. The antidiabetic activities of different extracts of this plant were investigated through alpha-glucosidase inhibitory (AGI) and 2-NBDG glucose uptake using 3T3-L1 cell line assays, while the antioxidant activity was evaluated using DPPH and FRAP assays. Its toxicological effect was investigated using the zebrafish embryo/larvae (Danio rerio) model. The mortality, hatchability, tail-detachment, yolk size, eye size, beat per minute (BPM), and body length were taken into account to observe the teratogenicity in all zebrafish embryos exposed to methanol extract. The LC50 was determined using probit analysis. The methanol extract showed the AGI activity (IC50 = 2.71 ± 0.11 μg/mL), insulin-sensitizing activity (at a concentration of 5 µg/mL), and potent antioxidant activities (IC50 = 10.85 μg/mL and 72.53 mg AAE/g for DPPH and FRAP activity, respectively). Similarly, the water extract exhibited AGI activity (IC50 = 6.75 μg/mL), insulin-sensitizing activity at the concentration of 10 μg/mL, and antioxidant activities (IC50 = 27.12 and 33.71 μg/mL for DPPH and FRAP activity, respectively). The methanol and water extracts exhibited the LC50 value higher than their therapeutic concentration, i.e., 37.50 and 252.45 µg/mL, respectively. These results indicate that both water and methanol extracts are safe and potentially an antidiabetic agent, but the former is preferable since its therapeutic index (LC50/therapeutic concentration) is much higher than for methanol extracts. Analysis using GC-MS on derivatized methanol and water extracts of P. malayana leaves detected partial information on some constituents including palmitic acid, 1,3,5-benzenetriol, 1-monopalmitin, beta-tocopherol, 24-epicampesterol, alpha-tocopherol, and stigmast-5-ene, that could be a potential target to further investigate the antidiabetic properties of the plant. Nevertheless, isolation and identification of the bioactive compounds are required to confirm their antidiabetic activity and toxicity.
Collapse
Affiliation(s)
- Tanzina Sharmin Nipun
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (T.S.N.); (Q.U.A.); (M.T.)
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (T.S.N.); (Q.U.A.); (M.T.)
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (T.S.N.); (Q.U.A.); (M.T.)
| | - Mohd Hamzah Mohd Nasir
- Central Research and Animal Facility, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia;
| | - Farahaniza Supandi
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Muhammad Taher
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (T.S.N.); (Q.U.A.); (M.T.)
| | - Mohd Zuwairi Saiman
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
4
|
An Infrared Analysis of Terminalia ferdinandiana Exell [Combretaceae] Fruit and Leaves—Towards the Development of Biospectroscopy Tools to Characterise Uniquely Australian Foods. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01915-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Nipun TS, Khatib A, Ahmed QU, Redzwan IE, Ibrahim Z, Khan AYF, Primaharinastiti R, Khalifa SAM, El-Seedi HR. Alpha-Glucosidase Inhibitory Effect of Psychotria malayana Jack Leaf: A Rapid Analysis Using Infrared Fingerprinting. Molecules 2020; 25:molecules25184161. [PMID: 32932994 PMCID: PMC7570612 DOI: 10.3390/molecules25184161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 11/26/2022] Open
Abstract
The plant Psychotria malayana Jack belongs to the Rubiaceae family and is known in Malaysia as “meroyan sakat/salung”. A rapid analytical technique to facilitate the evaluation of the P. malayana leaves’ quality has not been well-established yet. This work aimed therefore to develop a validated analytical technique in order to predict the alpha-glucosidase inhibitory action (AGI) of P. malayana leaves, applying a Fourier Transform Infrared Spectroscopy (FTIR) fingerprint and utilizing an orthogonal partial least square (OPLS). The dried leaf extracts were prepared by sonication of different ratios of methanol-water solvent (0, 25, 50, 75, and 100% v/v) prior to the assessment of alpha-glucosidase inhibition (AGI) and the following infrared spectroscopy. The correlation between the biological activity and the spectral data was evaluated using multivariate data analysis (MVDA). The 100% methanol extract possessed the highest inhibitory activity against the alpha-glucosidase (IC50 2.83 ± 0.32 μg/mL). Different bioactive functional groups, including hydroxyl (O-H), alkenyl (C=C), methylene (C-H), carbonyl (C=O), and secondary amine (N-H) groups, were detected by the multivariate analysis. These functional groups actively induced the alpha-glucosidase inhibition effect. This finding demonstrated the spectrum profile of the FTIR for the natural herb P. malayana Jack, further confirming its medicinal value. The developed validated model can be used to predict the AGI of P. malayana, which will be useful as a tool in the plant’s quality control.
Collapse
Affiliation(s)
- Tanzina Sharmin Nipun
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (T.S.N.); (Q.U.A.); (I.E.R.); (Z.I.)
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (T.S.N.); (Q.U.A.); (I.E.R.); (Z.I.)
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
- Correspondence: (A.K.); (R.P.); (S.A.M.K.)
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (T.S.N.); (Q.U.A.); (I.E.R.); (Z.I.)
| | - Irna Elina Redzwan
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (T.S.N.); (Q.U.A.); (I.E.R.); (Z.I.)
| | - Zalikha Ibrahim
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (T.S.N.); (Q.U.A.); (I.E.R.); (Z.I.)
| | - Al’aina Yuhainis Firus Khan
- Department of Biomedical Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia;
| | - Riesta Primaharinastiti
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
- Correspondence: (A.K.); (R.P.); (S.A.M.K.)
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
- Correspondence: (A.K.); (R.P.); (S.A.M.K.)
| | - Hesham R. El-Seedi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Characterization of α-glucosidase inhibitory activity of Tetracera scandens leaves by Fourier transform infrared spectroscopy-based metabolomics. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-019-00417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Optimization of Bioactive Substances in the Wastes of Some Selective Mediterranean Crops. BEVERAGES 2019. [DOI: 10.3390/beverages5030042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Production of added products from industrial byproducts is a challenge for the current natural product industry and the extraction field more generally. Therefore, the aim of this study is to valorize the selected Mediterranean crops that can be applied as antioxidants, natural chelating agents, or even as biosolvents or biofuels after special treatment. In this study, the wastes of popular Mediterranean plants were extracted via homogenizer-assisted extraction (HAE) by applying response surface methodology (RSM) to examine the effects of process parameters on the total biophenolic contents (TBCs) of their residues. Box–Behnken design model equations calculated for each system were found significant (p < 0.0001) with an adequate value of determination coefficient (R2). Olive leaf had the highest TBC content (58.62 mg-GAE/g-DW with 0.1 g sample, 42.5% ethanol at 6522.2 rpm for 2 min), followed by mandarin peel (27.79 mg-GAE/g-DW with 0.1 g sample, 34.24% ethanol at 8772 rpm for 1.99 min), grapefruit peel (21.12 mg-GAE/g-DW with 0.1 g sample, 42.33% ethanol at 5000 rpm for 1.125 min) and lemon peel (16.89 mg-GAE/g-DW with 0.1 g sample, 33.62% ethanol at 5007 rpm for 1.282 min). The antioxidant activities of the extracts were measured by several in vitro studies. The most prominent biophenols of the wastes were quantified by high performance liquid chromatography (HPLC). Fourier-transform infrared-attenuated total reflectance (FTIR-ATR) and atomic force microscopy (AFM) techniques were also used for characterization.
Collapse
|
8
|
Correlation of FT-IR Fingerprint and α-Glucosidase Inhibitory Activity of Salak ( Salacca zalacca) Fruit Extracts Utilizing Orthogonal Partial Least Square. Molecules 2018; 23:molecules23061434. [PMID: 29899270 PMCID: PMC6100117 DOI: 10.3390/molecules23061434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 11/16/2022] Open
Abstract
Salak fruit (Salacca zalacca), commonly known as snake fruit, is used indigenously as food and for medicinal applications in Southeast Asia. This study was conducted to evaluate the α-glucosidase inhibitory activity of salak fruit extracts in correlation to its Fourier transform infrared spectroscopy (FT-IR) fingerprint, utilizing orthogonal partial least square. This calibration model was applied to develop a rapid analytical method tool for quality control of this fruit. A total of 36 extracts prepared with different solvent ratios of ethanol–water (100, 80, 60, 40.20, 0% v/v) and their α-glucosidase inhibitory activities determined. The FT-IR spectra of ethanol–water extracts measured in the region of 400 and 4000 cm−1 at a resolution of 4 cm−1. Multivariate analysis with a combination of orthogonal partial least-squares (OPLS) algorithm was used to correlate the bioactivity of the samples with the FT-IR spectral data. The OPLS biplot model identified several functional groups (C–H, C=O, C–N, N–H, C–O, and C=C) which actively induced α-glucosidase inhibitory activity.
Collapse
|