1
|
Xhanari K, Finšgar M. Recent advances in the modification of electrodes for trace metal analysis: a review. Analyst 2023; 148:5805-5821. [PMID: 37697964 DOI: 10.1039/d3an01252b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
This review paper summarizes the research published in the last five years on using different compounds and/or materials as modifiers for electrodes employed in trace heavy metal analysis. The main groups of modifiers are identified, and their single or combined application on the surface of the electrodes is discussed. Nanomaterials, film-forming substances, and polymers are among the most used compounds employed mainly in the modification of glassy carbon, screen-printed, and carbon paste electrodes. Composites composed of several compounds and/or materials have also found growing interest in the development of modified electrodes. Environmentally friendly substances and natural products (mainly biopolymers and plant extracts) have continued to be included in the modification of electrodes for trace heavy metal analysis. The main analytical performance parameters of the modified electrodes as well as possible interferences affecting the determination of the target analytes, are discussed. Finally, a critical evaluation of the main findings from these studies and an outlook discussing possible improvements in this area of research are presented.
Collapse
Affiliation(s)
- Klodian Xhanari
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
- University of Tirana, Faculty of Natural Sciences, Boulevard "Zogu I", 1001 Tirana, Albania
| | - Matjaž Finšgar
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
2
|
Ramanathan S, Kasemchainan J, Chuang HC, Sobral AJFN, Poompradub S. Rhodamine B dye degradation using used face masks-derived carbon coupled with peroxymonosulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121386. [PMID: 36868547 DOI: 10.1016/j.envpol.2023.121386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Catalytic carbon materials from used face masks (UFM) activated by peroxymonosulfate (PMS) were developed for the degradation of rhodamine B (RhB) dye in aqueous solution. The UFM-derived carbon (UFMC) catalyst had a relatively large surface area as well as active functional groups and promoted the generation of singlet 1O2 and radicals from PMS, giving a high RhB degradation performance (98.1% after 3 h) in the presence of 3 mM PMS. The UFMC could degrade only 13.7% at a minimal RhB dose of 10-5 M. The principal reactive oxygen species of sulphate (SO4•), hydroxyl radicals (•OH), and singlet 1O2 were discovered using electron paramagnetic resonance and radical scavenger studies. Finally, a toxicological plant and bacterial study was performed to demonstrate the potential non-toxicity of the degraded RhB water sample.
Collapse
Affiliation(s)
- Subramaninan Ramanathan
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jitti Kasemchainan
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | | | - Sirilux Poompradub
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Green Materials for Industrial Application, Faculty of Science, Chulanongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
An integrated electrochemical platform empowered by paper for fast nickel detection in cosmetics. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Dahake RV, Bansiwal A. Disposable Sensors for Heavy Metals Detection: A Review of Carbon and Non‐Noble Metal‐Based Receptors. ChemistrySelect 2022. [DOI: 10.1002/slct.202202824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rashmi V. Dahake
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh
| | - Amit Bansiwal
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
| |
Collapse
|
5
|
Okpara EC, Fayemi OE, Wojuola OB, Onwudiwe DC, Ebenso EE. Electrochemical detection of selected heavy metals in water: a case study of African experiences. RSC Adv 2022; 12:26319-26361. [PMID: 36275116 PMCID: PMC9475415 DOI: 10.1039/d2ra02733j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
The safety of water resources throughout the globe has been compromised by various human activities and climate change over the last decades. Consequently, the world is currently confronted with a severe shortage of water supply and a water safety crisis, amidst a growing population. With poor environmental regulations, indiscriminate budding of urban slums, poverty, and a lack of basic knowledge of hygiene and sanitation, the African water supply has been critically threatened by different organic and inorganic contaminants, which results in several health issues. Inorganic pollutants such as heavy metals are particularly of interest because they are mostly stable and non-biodegradable. Therefore, they are not easily removed from water. In different parts of the continent, the concentration of heavy metals in drinking water far exceeds the permissible level recommended by the World Health Organization (WHO). Worse still, this problem is expected to increase with growing population, industrialization, urbanization, and, of course, corruption of government and local officials. Most of the African population is ignorant of the standards of safe water. In addition, the populace lack access to affordable and reliable technologies and tools that could be used in the quantification of these pollutants. This problem is not only applicable to domestic, but also to commercial, communal, and industrial water sources. Hence, a global campaign has been launched to ensure constant assessment of the presence of these metals in the environment and to promote awareness of dangers associated with unsafe exposure to them. Various conventional spectroscopic heavy metal detection techniques have been used with great success across the world. However, such techniques suffer from some obvious setbacks, such as the cost of procurement and professionalism required to operate them, which have limited their applications. This paper, therefore, reviews the condition of African water sources, health implications of exposure to heavy metals, and the approaches explored by various indigenous electrochemists, to provide a fast, affordable, sensitive, selective, and stable electrochemical sensors for the quantification of the most significant heavy metals in our water bodies.
Collapse
Affiliation(s)
- Enyioma C Okpara
- Department of Physics, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus) Private Bag X2046 Mmabatho 2735 South Africa
| | - Omolola E Fayemi
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus) Private Bag X2046 Mmabatho 2735 South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus) Private Bag X2046 Mmabatho 2735 South Africa
| | - Olanrewaju B Wojuola
- Department of Physics, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus) Private Bag X2046 Mmabatho 2735 South Africa
| | - Damian C Onwudiwe
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus) Private Bag X2046 Mmabatho 2735 South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus) Private Bag X2046 Mmabatho 2735 South Africa
| | - Eno E Ebenso
- College of Science, Engineering and Technology, University of South Africa Johannesburg 1710 South Africa
| |
Collapse
|
6
|
Coomassie brilliant blue G 250 modified carbon paste electrode sensor for the voltammetric detection of dihydroxybenzene isomers. Sci Rep 2021; 11:15933. [PMID: 34354155 PMCID: PMC8342535 DOI: 10.1038/s41598-021-95347-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022] Open
Abstract
In this present study, coomassie brilliant blue G-250 (CBBG) modified electrode was fabricated for the specific and simultaneous detection of three dihydroxybenzene isomers such as resorcinol (RS), catechol (CC) and hydroquinone (HQ). The fabrication of the modified electrode was carried out by electrochemical polymerization of CBBG on the surface of unmodified electrode. The surface structures of bare and fabricated electrode were studied by scanning electron microscope (SEM). The established electrode portrays the very fine interface with these isomers and displayed the sufficient sensitivity and selectivity. The specific parameters of pH solution, scan rate and varying the concentration of analytes were optimized at the modified electrode. The sensor process was originated to be adsorption-controlled activity and the low limit of detection (LOD) for RS and CC was attained at 0.24 and 0.21 µM respectively. In the simultaneous study, designed sensor clearly implies the three well separated anodic peaks for RS, HQ and CC nevertheless in unmodified electrode it failed. Also, the constructed electrode was applied for the real sample analysis in tap water and obtained results are agreeable and it consistent in-between 92.80–99.48%.
Collapse
|
7
|
Chetankumar K, Kumara Swamy BE, Sharma SC, Hariprasad SA. An efficient electrochemical sensing of hazardous catechol and hydroquinone at direct green 6 decorated carbon paste electrode. Sci Rep 2021; 11:15064. [PMID: 34301960 PMCID: PMC8302748 DOI: 10.1038/s41598-021-93749-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
In this proposed work, direct green 6 (DG6) decorated carbon paste electrode (CPE) was fabricated for the efficient simultaneous and individual sensing of catechol (CA) and hydroquinone (HY). Electrochemical deeds of the CA and HY were carried out by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at poly-DG6-modfied carbon paste electrode (Po-DG6-MCPE). Using scanning electron microscopy (SEM) studied the surface property of unmodified CPE (UCPE) and Po-DG6-MCPE. The decorated sensor displayed admirable electrocatalytic performance with fine stability, reproducibility, selectivity, low limit of detection (LLOD) for HY (0.11 μM) and CC (0.09 μM) and sensor process was originated to be adsorption-controlled phenomena. The Po-DG6-MCPE sensor exhibits well separated two peaks for HY and CA in CV and DPV analysis with potential difference of 0.098 V. Subsequently, the sensor was practically applied for the analysis in tap water and it consistent in-between for CA 93.25–100.16% and for HY 97.25–99.87% respectively.
Collapse
Affiliation(s)
- K Chetankumar
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577451, Shivamogga, Karnataka, India
| | - B E Kumara Swamy
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577451, Shivamogga, Karnataka, India.
| | - S C Sharma
- National Assessment and Accreditation Council (NAAC), Naagarabhaavi, Bengaluru, 560072, Karnataka, India. .,Jain University, Bengaluru, 560069, Karnataka, India. .,School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, India.
| | | |
Collapse
|
8
|
Rafique S, Badiei N, Burton MR, Gonzalez-Feijoo JE, Carnie MJ, Tarat A, Li L. Paper Thermoelectrics by a Solvent-Free Drawing Method of All Carbon-Based Materials. ACS OMEGA 2021; 6:5019-5026. [PMID: 33644610 PMCID: PMC7905928 DOI: 10.1021/acsomega.0c06221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
As practical interest in the flexible or wearable thermoelectric generators (TEGs) has increased, the demand for the high-performance TEGs based on ecofriendly, mechanically resilient, and economically viable TEGs as alternatives to the brittle inorganic materials is growing. Organic or hybrid thermoelectric (TE) materials have been employed in flexible TEGs; however, their fabrication is normally carried out using wet processing such as spin-coating or screen printing. These techniques require materials dissolved or dispersed in solvents; thus, they limit the substrate choice. Herein, we have rationally designed solvent-free, all carbon-based TEGs dry-drawn on a regular office paper using few-layered graphene (FLG). This technique showed very good TE parameters, yielding a power factor of 97 μW m-1 K-2 at low temperatures. The p-type only device exhibited an output power of up to ∼19.48 nW. As a proof of concept, all carbon-based p-n TEGs were created on paper with the addition of HB pencil traces. The HB pencil exhibited low Seebeck coefficients (-7 μV K-1), and the traces were highly resistive compared to FLG traces, which resulted in significantly lower output power compared to the p-type only TEG. The demonstration of all carbon-based TEGs drawn on paper highlights the potential for future low-cost, flexible, and almost instantaneously created TEGs for low-power applications.
Collapse
Affiliation(s)
- Saqib Rafique
- College
of Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - Nafiseh Badiei
- College
of Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - Matthew R. Burton
- SPECIFIC,
College of Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | | | - Matthew J. Carnie
- SPECIFIC,
College of Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - Afshin Tarat
- Perpetuus
Carbon Technologies Ltd., Unit B1, Olympus Ct, Mill Stream Way, Llansamlet Swansea SA7 0AQ, United
Kingdom
| | - Lijie Li
- College
of Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| |
Collapse
|
9
|
Chetankumar K, Kumara Swamy B, Sharma S. Safranin amplified carbon paste electrode sensor for analysis of paracetamol and epinephrine in presence of folic acid and ascorbic acid. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Chetankumar K, Kumara Swamy B, Sharma S. Electrochemical preparation of poly (direct yellow 11) modified pencil graphite electrode sensor for catechol and hydroquinone in presence of resorcinol: A voltammetric study. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104979] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Xiang H, Cai Q, Li Y, Zhang Z, Cao L, Li K, Yang H. Sensors Applied for the Detection of Pesticides and Heavy Metals in Freshwaters. JOURNAL OF SENSORS 2020; 2020:1-22. [DOI: 10.1155/2020/8503491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Water is essential for every life living on the planet. However, we are facing a more serious situation such as water pollution since the industrial revolution. Fortunately, many efforts have been done to alleviate/restore water quality in freshwaters. Numerous sensors have been developed to monitor the dynamic change of water quality for ecological, early warning, and protection reasons. In the present review, we briefly introduced the pollution status of two major pollutants, i.e., pesticides and heavy metals, in freshwaters worldwide. Then, we collected data on the sensors applied to detect the two categories of pollutants in freshwaters. Special focuses were given on the sensitivity of sensors indicated by the limit of detection (LOD), sensor types, and applied waterbodies. Our results showed that most of the sensors can be applied for stream and river water. The average LOD was72.53±12.69 ng/ml (n=180) for all pesticides, which is significantly higher than that for heavy metals (65.36±47.51 ng/ml,n=117). However, the LODs of a considerable part of pesticides and heavy metal sensors were higher than the criterion maximum concentration for aquatic life or the maximum contaminant limit concentration for drinking water. For pesticide sensors, the average LODs did not differ among insecticides (63.83±17.42 ng/ml,n=87), herbicides (98.06±23.39 ng/ml,n=71), and fungicides (24.60±14.41 ng/ml,n=22). The LODs that differed among sensor types with biosensors had the highest sensitivity, while electrochemical optical and biooptical sensors showed the lowest sensitivity. The sensitivity of heavy metal sensors varied among heavy metals and sensor types. Most of the sensors were targeted on lead, cadmium, mercury, and copper using electrochemical methods. These results imply that future development of pesticides and heavy metal sensors should (1) enhance the sensitivity to meet the requirements for the protection of aquatic ecosystems and human health and (2) cover more diverse pesticides and heavy metals especially those toxic pollutants that are widely used and frequently been detected in freshwaters (e.g., glyphosate, fungicides, zinc, chromium, and arsenic).
Collapse
Affiliation(s)
- Hongyong Xiang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Qinghua Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuan Li
- Northwest Land and Resources Research Center, Shaanxi Normal Northwest University, China
| | - Zhenxing Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, Jilin 130024, China
| | - Lina Cao
- Ecology and Environment Department of Jilin Province, Changchun, Jilin 130024, China
| | - Kun Li
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin 150080, China
| | - Haijun Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
- School of Life Science and Geology, Yili Normal University, Yili, Xinjiang 835000, China
| |
Collapse
|
12
|
Pokpas K, Jahed N, Iwuoha E. Tuneable, Pre-stored Paper-Based Electrochemical Cells (μPECs): an Adsorptive Stripping Voltammetric Approach to Metal Analysis. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00516-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Beitollahi H, Mahmoudi Moghaddam H, Tajik S. Voltammetric Determination of Bisphenol A in Water and Juice Using a Lanthanum (III)-Doped Cobalt (II,III) Nanocube Modified Carbon Screen-Printed Electrode. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1545132] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Hadi Mahmoudi Moghaddam
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Tajik
- NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|