1
|
Sağlam S, Türk FN, Arslanoğlu H. Tetracycline (TC) removal from wastewater with activated carbon (AC) obtained from waste grape marc: activated carbon characterization and adsorption mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33904-33923. [PMID: 38691290 PMCID: PMC11512861 DOI: 10.1007/s11356-024-33493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
In this study, activated carbons were obtained from grape marc for tetracycline removal from wastewater. Activated carbons were obtained by subjecting them to pyrolysis at 300, 500, and 700 °C, respectively, and the effect of pyrolysis temperature on activated carbons was investigated. The physicochemical and surface properties of the activated carbons were evaluated by SEM, FTIR, XRD, elemental analysis, N2 adsorption/desorption isothermal, thermal gravimetric (TG) and derivative thermogravimetric (DTG), and BET surface area analysis. When the BET surface areas were examined, it was found that 4.25 m2/g for activated carbon was produced at 300 °C, 44.23 m2/g for activated carbon obtained at 500 °C and 44.23 m2/g at 700 °C, which showed that the BET surface areas increased with increasing pyrolysis temperatures. The pore volumes of the synthesized activated carbons were 0.0037 cm3/g, 0.023 cm3/g, and 0.305 cm3/g for pyrolysis temperatures of 300, 500, and 700 °C, respectively, while the average pore size was found to be 8.02 nm, 9.45 nm, and 10.29 nm, respectively. A better adsorption capacity was observed due to the decrease in oxygen-rich functional groups with increasing pyrolysis temperature. It was observed that the activated carbon obtained from grape skins can easily treat hazardous wastewater containing tetracycline due to its high carbon content and surface functional groups. It was also shown that the activated carbon synthesized in this study has a higher pore volume despite its low surface area compared to the studies in the literature. Thanks to the high pore volume and surface active groups, a successful tetracycline removal was achieved.
Collapse
Affiliation(s)
- Semanur Sağlam
- Department of Chemical Engineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Feride N Türk
- Central Research Laboratory Application and Research Center, Çankırı Karatekin University, Çankırı, Turkey
| | - Hasan Arslanoğlu
- Department of Chemical Engineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Çanakkale, Turkey.
| |
Collapse
|
2
|
Escamilla-Lara KA, Lopez-Tellez J, Rodriguez JA. Adsorbents obtained from recycled polymeric materials for retention of different pollutants: A review. CHEMOSPHERE 2023:139159. [PMID: 37290512 DOI: 10.1016/j.chemosphere.2023.139159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Polymeric waste is an environmental problem, with an annual world production of approximately 368 million metric tons, and increasing every year. Therefore, different strategies for polymer waste treatment have been developed, and the most common are (1) redesign, (2) reusing and (3) recycling. The latter strategy represents a useful option to generate new materials. This work reviews the emerging trends in the development of adsorbent materials obtained from polymer wastes. Adsorbents are used in filtration systems or in extraction techniques for the removal of contaminants such as heavy metals, dyes, polycyclic aromatic hydrocarbons and other organic compounds from air, biological and water samples. The methods used to obtain different adsorbents are detailed, as well as the interaction mechanisms with the compounds of interest (contaminants). The adsorbents obtained are an alternative to recycle polymeric and they are competitive with other materials applied in the removal and extraction of contaminants.
Collapse
Affiliation(s)
- Karen A Escamilla-Lara
- Area Academica de Quimica, Universidad Autonoma Del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de La Reforma, Hidalgo, Mexico
| | - Jorge Lopez-Tellez
- Area Academica de Quimica, Universidad Autonoma Del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de La Reforma, Hidalgo, Mexico
| | - Jose A Rodriguez
- Area Academica de Quimica, Universidad Autonoma Del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de La Reforma, Hidalgo, Mexico.
| |
Collapse
|
3
|
Ecofriendly nanoparticles derived from water industry byproducts for effective removal of Cu (II) from wastewater: Adsorption isotherms and kinetics. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Gul A, Ma’amor A, Khaligh NG, Julkapli NM. Recent Advancements in the Applications of Activated Carbon for the Heavy Metals and Dyes Removal. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Bayuo J, Rwiza M, Mtei K. Response surface optimization and modeling in heavy metal removal from wastewater-a critical review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:351. [PMID: 35396639 DOI: 10.1007/s10661-022-09994-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The existence of hazardous heavy metals in aquatic settings causes health risks to humans, prompting researchers to devise effective methods for removing these pollutants from drinking water and wastewater. To obtain optimum removal efficiencies and sorption capacities of the contaminants on the sorbent materials, it is normally necessary to optimize the purification technology to attain the optimum value of the independent process variables. This review discusses the most current advancements in using various adsorbents for heavy metal remediation, as well as the modeling and optimization of the adsorption process independent factors by response surface methodology. The remarkable efficiency of the response surface methodology for the extraction of the various heavy metal ions from aqueous systems by various types of adsorbents is confirmed in this critical review. For the first time, this review also identifies several gaps in the optimization of adsorption process factors that need to be addressed. The comprehensive analysis and conclusions in this review should also be useful to industry players, engineers, environmentalists, scientists, and other motivated researchers interested in the use of the various adsorbents and optimization methods or tools in environmental pollution cleanup.
Collapse
Affiliation(s)
- Jonas Bayuo
- Department of Materials Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Postal Box 447, Arusha, Tanzania.
- Department of Science Education, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Postal Box 24, Upper East Region, Ghana.
| | - Mwemezi Rwiza
- Department of Materials Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Postal Box 447, Arusha, Tanzania
| | - Kelvin Mtei
- Department of Materials Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Postal Box 447, Arusha, Tanzania
| |
Collapse
|
6
|
Saka C, Yardim Y, Şahin Ö, Baytar O. Iodine adsorption and electrochemical double-layer capacitor characteristics of activated carbon prepared from low-cost biomass. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:74-81. [PMID: 35385347 DOI: 10.1080/15226514.2022.2057420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The efficient adsorption application and electric double-layer capacitor material with low-cost biomass-based activated carbon materials have been quite common recently. In this study, chestnut shell-based activated carbons were produced by chemical activation. ZnCl2, H3PO4, and KOH agents were used for chemical activation. The obtained activated carbon, iodine adsorption from aqueous solutions, and its use as an electro capacitor were investigated. The scanning electron microscope, nitrogen adsorption/desorption, and Fourier transform infrared spectroscopy were used for characterization. The values of surface area and iodine adsorption capacity of the chestnut shell-based activated carbon are 1544 m2 g-1 and 1525 mg g-1. As a result, a specific capacitance of 97 Fg-1 with chestnut shell-based activated carbon was obtained in a 1 M KCl electrolyte for the electrochemical double-layer capacitor. This study shows that activated carbon based on the chestnut shell can be used both as an electrochemical energy storage material and as an adsorbent in iodine adsorption.
Collapse
Affiliation(s)
- Cafer Saka
- Faculty of Health Sciences, Siirt University, Siirt, Turkey
| | - Yavuz Yardim
- Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Ömer Şahin
- Faculty of Engineering, Siirt University, Siirt, Turkey
| | - Orhan Baytar
- Faculty of Engineering, Siirt University, Siirt, Turkey
| |
Collapse
|
7
|
|
8
|
Arslanoğlu H, Çiftçi H. Use of sulfuric acid-carbonization materials from grape pulp for the removal of hexavalent chromium (Cr(VI)): mechanism and characterization. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1145-1156. [PMID: 33587683 DOI: 10.1080/15226514.2021.1880368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigated the reduction of hexavalent chromium (Cr(VI)) with sulfur dioxide (SO2) and adsorption of Cr(VI) onto dried grape pulp carbonized with sulfuric acid. Cr(VI) reduction capacities of SO2 were determined. The filtrate was titrated with NaOH solution after shaking and filtering the carbonized material to retain unreacted sulfuric acid (H2SO4). Simple washing recovered 25-38% of the experimental acid at low concentrations. The carbonized material was washed twice with distilled water and then dried at 105 °C and weighed. The carbonized material had a yield of 56.6% (grape pulp/sulfuric acid ratios of 1:2), and the lower the H2SO4 content, the better the yield, suggesting that the higher the acid content, the lower the Cr(VI) content per unit grape pulp. Cr(VI) reduction capacities were 219.5, 195.3, and 190.9 mg Cr(VI)/g-H2SO4 for the grape pulp/sulfuric acid ratios of 1:1, 1:2, and 1:3, respectively. Novelty statement: A carbonaceous material was obtained from grape pulp by carbonizing with concentrated sulfuric acid. The main objective of this study was to evaluate gas, liquid, and solid products or co-products obtained during carbonization process for hexavalent chromium treatment in aqueous solutions. In this context, (a) hexavalent chromium reduction capability of the gas evolved during carbonization was determined, (b) characterization of unreacted acid recovered by washing the carbonized product left after carbonization step was done, (c) carbonaceous adsorbent obtained was characterized and (d) hexavalent chromium adsorption characteristics of carbonaceous material obtained was determined.HIGHLIGHTSReduction and adsorption mechanisms of hexavalent chromium were investigated.A waste recycling method was proposed.The effects of sulfuric acid on carbonization were assessed.The structures and chemical compositions of a carbonized material were evaluated.The carbonized material is a cost-effective porous adsorbent for a clean environment.
Collapse
Affiliation(s)
- Hasan Arslanoğlu
- Department of Chemical and Process Engineering, Faculty of Engineering and Architecture, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Harun Çiftçi
- Department of Medical Biochemistry, Faculty of Medicine, Kırşehir Ahi Evran University, Kırşehir, Turkey
| |
Collapse
|
9
|
Bouriche R, Tazibet S, Boutillara Y, Melouki R, Benaliouche F, Boucheffa Y. Characterization of Titanium (IV) Oxide Nanoparticles Loaded onto Activated Carbon for the Adsorption of Nitrogen Oxides Produced from the Degradation of Nitrocellulose. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1829637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Rachid Bouriche
- Institut National de Criminologie et de Criminalistique, Bouchaoui, Algiers, Algeria
- Unité d’Enseignement et de Recherche en Physico-chimie des Matériaux/Ecole Militaire Polytechnique, Algiers, Algeria
| | - Sana Tazibet
- Unité d’Enseignement et de Recherche en Physico-chimie des Matériaux/Ecole Militaire Polytechnique, Algiers, Algeria
| | - Yasmine Boutillara
- Unité d’Enseignement et de Recherche en Physico-chimie des Matériaux/Ecole Militaire Polytechnique, Algiers, Algeria
| | - Redouane Melouki
- Unité d’Enseignement et de Recherche en Physico-chimie des Matériaux/Ecole Militaire Polytechnique, Algiers, Algeria
| | - Fouad Benaliouche
- Unité d’Enseignement et de Recherche en Physico-chimie des Matériaux/Ecole Militaire Polytechnique, Algiers, Algeria
| | - Youcef Boucheffa
- Laboratoire d’Etude Physico-chimique des Matériaux et Application à l’Environnement, Université des Sciences et de la Technologie Houari Boumediene, Algeria El‑Alia, Bab‑Ezzouar, Algiers, Algeria
| |
Collapse
|