1
|
Xia L, Huang A, Niu X, Wu Z, Tang Y, Zhou J, Wu Y. Laccase-mimicking activity of octahedral Mn 3O 4 nanoparticles and fluorescence of carbon dots as dual-mode signals for the specific detection of arsenic(V) in environmental water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175559. [PMID: 39153631 DOI: 10.1016/j.scitotenv.2024.175559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The detrimental growth of water pollutants such as heavy metals has become a life-threatening problem in the modern era. Challenges remain in the development of rapid and accurate methods for detecting pentavalent arsenic [As(V)] in environmental water. The octahedral Mn3O4 nanoparticles (NPs) did not display excellent laccase-mimicking catalytic activity, whereas the adsorbed As(V) on the surface significantly enhanced the catalytic activity. Meanwhile, the quinone imine generated from the substrates 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AAP) catalyzed by octahedral Mn3O4 NPs further quenched the carbon dots fluorescence. Thus, it is possible to establish a fast and accurate dual-mode sensor for detecting As(V). The developed dual-mode method of As(V) detection has good sensitivity and selectivity. The limit of detection for As(V) in colorimetric mode is 6.96 μg·L-1, whereas in the fluorescent mode, it is as low as 2.56 μg·L-1. Moreover, the detection data obtained by the dual-mode method can be validated by each other, thereby ensuring the dependability of the sensing system. The constructed dual-mode method with merits of sensitivity, speed and accuracy can offer a powerful tool for As(V) detection in environmental water. Furthermore, the application of laccase-mimicking activity in dual-mode detection provides new strategies for other environmental hazard detection.
Collapse
Affiliation(s)
- Lian Xia
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China
| | - Andi Huang
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaojuan Niu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China; College of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Zhen Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China
| | - Yue Tang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yuangen Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
ZHOU W, CHEN BL, XIE LF, LI H, YUAN MY, LIU QQ, YIN JN. Rapid and high sensitive detection of hexavalent chromium based on silver nanowire arrays SERS substrate. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Sharma S, Jaiswal A, Tiwari A, Uttam KN. Rapid Detection of Metal Ions in the Aqueous Medium by Colorimetry and Surface Enhanced Raman Scattering Using Vanillic Acid-Coated Silver Nanoparticles. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2069796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Sweta Sharma
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
- Department of Applied Science and Humanities, Faculty of Engineering and Technology, Khwaja Moinuddin Chishti Language University, Lucknow, India
| | - Aarti Jaiswal
- Centre for Material Science, IIDS, University of Allahabad, Allahabad, India
| | - Aparna Tiwari
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - K. N. Uttam
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| |
Collapse
|