1
|
Kumari P, Agrawal P, Umarao P, Ramachandran V, Gourinath S. Identification of Small Molecule Inhibitors Targeting Phosphoserine Phosphatase: A Novel Target for the Development of Antiamoebic Drugs. ACS OMEGA 2024; 9:27906-27918. [PMID: 38973836 PMCID: PMC11223228 DOI: 10.1021/acsomega.3c09439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 07/09/2024]
Abstract
Amoebiasis, a widespread disease caused by the protozoan parasite Entamoeba histolytica, poses challenges due to the adverse effects of existing antiamoebic drugs and rising drug resistance. Novel targeted drugs are in need of the hour to combat the prevalence of this disease. Given the significance of cysteine for Entamoeba survival, the rate-determining step in the serine (the sole substrate of cysteine synthesis) biosynthetic pathway, i.e., the conversion of 3-phosphoserine to l-serine catalyzed by phosphoserine phosphatase (PSP), emerges as a promising drug target. Our previous study unveils the essential role of EhPSP in amoebas' survival, particularly under oxidative stress, by increasing cysteine production. The study also revealed that EhPSP differs significantly from its human counterpart, both structurally and biochemically, highlighting its potential as a viable target for developing new antiamoebic drugs. In the present study, employing in silico screening of vast natural and synthetic small chemical compound libraries, we identified 21 potential EhPSP inhibitor molecules. Out of the 21 compounds examined, only five could inhibit the catalytic activity of EhPSP. The inhibition capability of these five compounds was subsequently validated by in silico binding free energy calculations, SPR-based real-time binding studies, and molecular simulations to assess the stability of the EhPSP-inhibitor complexes. By identifying the five potential inhibitors that can target cysteine synthesis via EhPSP, our findings establish EhPSP as a drug candidate that can serve as a foundation for antiamoebic drug research.
Collapse
Affiliation(s)
- Poonam Kumari
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
- Structural
Biology Lab, School of Life Sciences, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Prakhar Agrawal
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Preeti Umarao
- Structural
Biology Lab, School of Life Sciences, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Vijayan Ramachandran
- The
Centre for Innovation in Brain Sciences, University of Arizona, Tucson 85721, Arizona, United States
| | - Samudrala Gourinath
- Structural
Biology Lab, School of Life Sciences, Jawaharlal
Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Talamás-Lara D, Chávez-Munguía B, González-Robles A, Talamás-Rohana P, Salazar-Villatoro L, Durán-Díaz Á, Martínez-Palomo A. Erythrophagocytosis in Entamoeba histolytica and Entamoeba dispar: a comparative study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:626259. [PMID: 25003123 PMCID: PMC4066688 DOI: 10.1155/2014/626259] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/08/2023]
Abstract
Entamoeba histolytica is the causative agent of human intestinal and liver amebiasis. The extraordinary phagocytic activity of E. histolytica trophozoites has been accepted as one of the virulence mechanisms responsible for their invasive capacity. The recognition of the noninvasive Entamoeba dispar as a different species has raised the question as to whether the lack of pathogenic potential of this ameba correlates with a limited phagocytic capacity. We have therefore compared the process of erythrophagocytosis in both species by means of light and video microscopy, hemoglobin measurement, and the estimation of reactive oxygen species (ROS). In the present study, we confirmed that E. dispar has lower erythrophagocytic capacity. We also observed by video microscopy a new event of erythrocyte opsonization-like in both species, being more characteristic in E. histolytica. Moreover, E. dispar showed a lower capacity to produce ROS compared with the invasive species and also showed a large population of amoebae that did not engulf any erythrocyte over time. Our results demonstrate that E. histolytica has a higher phagocytic capacity than E. dispar, including a higher rate of production of ROS in the course of ingesting red blood cells.
Collapse
Affiliation(s)
- Daniel Talamás-Lara
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, IPN, Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360 Mexico City, DF, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, IPN, Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360 Mexico City, DF, Mexico
| | - Arturo González-Robles
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, IPN, Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360 Mexico City, DF, Mexico
| | - Patricia Talamás-Rohana
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, IPN, Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360 Mexico City, DF, Mexico
| | - Lizbeth Salazar-Villatoro
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, IPN, Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360 Mexico City, DF, Mexico
| | - Ángel Durán-Díaz
- Faculty of Superior Studies Iztacala, Biology, UNAM, Los Reyes Iztacala, 54090 Tlalnepantla, MEX, Mexico
| | - Adolfo Martínez-Palomo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, IPN, Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360 Mexico City, DF, Mexico
| |
Collapse
|
3
|
Davis PH, Chen M, Zhang X, Clark CG, Townsend RR, Stanley SL. Proteomic comparison of Entamoeba histolytica and Entamoeba dispar and the role of E. histolytica alcohol dehydrogenase 3 in virulence. PLoS Negl Trop Dis 2009; 3:e415. [PMID: 19365541 PMCID: PMC2663792 DOI: 10.1371/journal.pntd.0000415] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 03/17/2009] [Indexed: 11/28/2022] Open
Abstract
The protozoan intestinal parasite Entamoeba histolytica infects millions of people worldwide and is capable of causing amebic dysentery and amebic liver abscess. The closely related species Entamoeba dispar colonizes many more individuals, but this organism does not induce disease. To identify molecular differences between these two organisms that may account for their differential ability to cause disease in humans, we used two-dimensional gel-based (DIGE) proteomic analysis to compare whole cell lysates of E. histolytica and E. dispar. We observed 141 spots expressed at a substantially (>5-fold) higher level in E. histolytica HM-1∶IMSS than E. dispar and 189 spots showing the opposite pattern. Strikingly, 3 of 4 proteins consistently identified as different at a greater than 5-fold level between E. histolytica HM-1∶IMSS and E. dispar were identical to proteins recently identified as differentially expressed between E. histolytica HM-1∶IMSS and the reduced virulence strain E. histolytica Rahman. One of these was E. histolytica alcohol dehydrogenase 3 (EhADH3). We found that E. histolytica possesses a higher level of NADP-dependent alcohol dehydrogenase activity than E. dispar and that some EhADH3 can be localized to the surface of E. histolytica. Episomal overexpression of EhADH3 in E. histolytica trophozoites resulted in only subtle phenotypic differences in E. histolytica virulence in animal models of amebic colitis and amebic liver abscess, making it difficult to directly link EhADH3 levels to virulence differences between E. histolytica and less-pathogenic Entamoeba. Infection with Entamoeba histolytica can result in disabling diarrhea or even death, while the morphologically identical and genetically similar Entamoeba dispar harmlessly colonizes the human intestine. Understanding the molecular differences between these two organisms by comparing their protein repertoire may help us to understand why E. histolytica invades into colonic tissue, while E. dispar remains a benign passenger. Here, we identify four proteins that appear to be differentially expressed between the two species and show that a metabolic enzyme, which would appear to be an unlikely candidate for a role in disease, is expressed at much higher levels in the pathogenic organism.
Collapse
Affiliation(s)
- Paul H. Davis
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Minghe Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaochun Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - C. Graham Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - R. Reid Townsend
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Samuel L. Stanley
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
4
|
Ramos-Martínez E, Olivos-García A, Saavedra E, Nequiz M, Sánchez EC, Tello E, El-Hafidi M, Saralegui A, Pineda E, Delgado J, Montfort I, Pérez-Tamayo R. Entamoeba histolytica: oxygen resistance and virulence. Int J Parasitol 2008; 39:693-702. [PMID: 19073188 DOI: 10.1016/j.ijpara.2008.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 11/25/2022]
Abstract
Entamoeba histolytica virulence has been attributed to several amoebic molecules such as adhesins, amoebapores and cysteine proteinases, but supporting evidence is either partial or indirect. In this work we compared several in vitro and in vivo features of both virulent E. histolytica (vEh) and non-virulent E. histolytica (nvEh) axenic HM-1 IMSS strains, such as complement resistance, proteinase activity, haemolytic, phagocytic and cytotoxic capacities, survival in mice caecum, and susceptibility to O(2). The only difference observed was a higher in vitro susceptibility of nvEh to O(2). The molecular mechanism of that difference was analyzed in both groups of amoebae after high O(2) exposure. vEh O(2) resistance correlated with: (i) higher O(2) reduction (O(2)(-) and H(2)O(2) production); (ii) increased H(2)O(2) resistance and thiol peroxidase activity, and (iii) reversible pyruvate: ferredoxin oxidoreductase (PFOR) inhibition. Despite the high level of carbonylated proteins in nvEh after O(2) exposure, membrane oxidation by reactive oxygen species was not observed. These results suggest that the virulent phenotype of E. histolytica is related to the greater ability to reduce O(2) and H(2)O(2) as well as PFOR reactivation, whereas nvEh undergoes irreversible PFOR inhibition resulting in metabolic failure and amoebic death.
Collapse
Affiliation(s)
- Espiridión Ramos-Martínez
- Departamento de Medicina Experimental Facultad de Medicina, Dr. Balmis 148 Colonia Doctores, Universidad Nacional Autónoma de México, 06720 México DF, CP 04510, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bera T, Nandi N, Sudhahar D, Akbar MA, Sen A, Das P. Preliminary evidence on existence of transplasma membrane electron transport in Entamoeba histolytica trophozoites: a key mechanism for maintaining optimal redox balance. J Bioenerg Biomembr 2006; 38:299-308. [PMID: 17039394 DOI: 10.1007/s10863-006-9047-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Entamoeba histolytica, an amitochondriate parasitic protist, was demonstrated to be capable of reducing the oxidized form of alpha-lipoic acid, a non permeable electron acceptor outside the plasma membrane. This transmembrane reduction of non permeable electron acceptors with redox potentials ranging from -290 mV to +360 mV takes place at neutral pH. The transmembrane reduction of non permeable electron acceptors was not inhibited by mitochondrial electron transport inhibitors such as antimycin A, rotenone, cyanide and azide. However, a clear inhibition with complex III inhibitor, 2-(n-heptyl)-4-hydroxyquinoline-N-oxide; modifiers of sulphydryl groups and inhibitors of glycolysis was revealed. The iron-sulphur centre inhibitor thenoyltrifluoroacetone failed to inhibit the reduction of non permeable electron acceptors whereas capsaicin, an inhibitor of energy coupling NADH oxidase, showed substantial inhibition. p-trifluromethoxychlorophenylhydrazone, a protonophore uncoupler, resulted in the stimulation of alpha-lipoic acid reduction but inhibition in oxygen uptake. Mitochondrial electron transport inhibitors substantially inhibited the oxygen uptake in E. histolytica. Transmembrane reduction of alpha-lipoic acid was strongly stimulated by anaerobiosis and anaerobic stimulation was inhibited by 2-(n-heptyl)-4-hydroxyquinoline-N-oxide. Transmembrane redox system of E. histolytica was also found to be sensitive to UV irradiation. All these findings clearly demonstrate the existence of transplasma membrane electron transport system in E. histolytica and possible involvment of a naphthoquinone coenzyme in transmembrane redox of E. histolytica which is different from that of mammalian host and therefore can provide a novel target for future rational chemotherapeutic drug designing.
Collapse
Affiliation(s)
- Tanmoy Bera
- Department of Pharmaceutical Technology, Division of Medicinal Biochemistry, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | | | | | | | | | | |
Collapse
|
6
|
Mukhopadhyay RM, Chaudhuri SK. Rapid in vitro test for determination of anti-amoebic activity. Trans R Soc Trop Med Hyg 1996; 90:189-91. [PMID: 8761587 DOI: 10.1016/s0035-9203(96)90136-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A rapid microplate assay for the detection of potential compounds active against Entamoeba histolytica is described. The assay is based on the metabolic reduction of a tetrazolium salt by E. histolytica trophozoites as an indicator of their viability which may be measured photometrically. The method was validated by determining the dose-response characteristics of standard amoebicides and correlating optical density and cell number; it provides a convenient means of selecting potentially novel anti-amoebic compounds for subsequent testing in vivo.
Collapse
|
7
|
Abstract
Many of the parasitic protozoa, such as Entamoeba histolytica, Giardia, Trypanosoma, Leishmania, and Plasmodium, are considered to be anaerobes because they can be grown in vitro only under conditions of reduced oxygen tension. However, these parasitic protozoa have been found to be aerotolerant or microaerophilic, and also to consume oxygen to a certain extent. Furthermore, these organisms are highly susceptible to exogenous reactive oxygen species, such as hydrogen peroxide. They must, therefore, detoxify both oxygen and free radical products of enzymatic reactions. However, they lack some or all of the usual antioxidant defense mechanisms present in aerobic or other aerotolerant cells, such as catalase, superoxide dismutase, reduced glutathione, and the glutathione-recycling enzymes glutathione peroxidase and glutathione reductase. Instead, they possess alternative mechanisms for detoxification similar to those known to exist in certain prokaryotes. Although the functional aspects of these alternative mechanisms are yet to be understood completely, they could provide new insights into the biochemical peculiarities of these enigmatic pathogens.
Collapse
Affiliation(s)
- R K Mehlotra
- Division of Geographic Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4983, USA
| |
Collapse
|