1
|
Ghosh C, Kumar N, Kushwah RBS, M. S, Joshi SG, Ramanjini CK, Alalamath T, Srinivasan S, Subramani S, Kumar S, Swain S. Enrichment of phenotype among biological forms of Anopheles stephensi Liston through establishment of isofemale lines. Parasit Vectors 2023; 16:79. [PMID: 36855157 PMCID: PMC9976541 DOI: 10.1186/s13071-023-05696-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Vector management programs rely on knowledge of the biology and genetic make-up of mosquitoes. Anopheles stephensi is a major invasive urban malaria vector, distributed throughout the Indian subcontinent and Middle East, and has recently been expanding its range in Africa. With the existence of three biological forms, distinctly identifiable based on the number of ridges on eggs and varying vectorial competence, An. stephensi is a perfect species for developing isofemale lines, which can be tested for insecticide susceptibility and vectorial competence of various biological forms. METHODS We describe key steps involved in establishment and validation of isofemale lines. Isofemale colonies were further used for the characterization of insecticide susceptibility and differential vector competence. The results were statistically evaluated through descriptive and inferential statistics using Vassar Stat and Prism GraphPad software packages. RESULTS Through a meticulous selection process, we overcame an initial inbreeding depression and found no significant morphometric differences in wings and egg size between the parental and respective isofemale lines in later generations. IndCh and IndInt strains showed variations in resistance to different insecticides belonging to all four major classes. We observed a significant change in vectorial competence between the respective isofemale and parental lines. CONCLUSIONS Isofemale lines can be a valuable resource for characterizing and enhancing several genotypic and phenotypic traits. This is the first detailed report of the establishment of two isofemale lines of type and intermediate biological forms in Anopheles stephensi. The work encompasses characterization of fitness traits among two lines through a transgenerational study. Furthermore, isofemale colonies were established and used to characterize insecticide susceptibility and vector competence. The study provides valuable insights into differential susceptibility status of the parental and isofemale lines to different insecticides belonging to the same class. Corroborating an earlier hypothesis, we demonstrate the high vector competence of the type form relative to the intermediate form using homozygous lines. Using these lines, it is now possible to study host-parasite interactions and identify factors that might be responsible for altered susceptibility and increased vector competence in An. stephensi biological forms that would also pave the way for developing better vector management strategies.
Collapse
Affiliation(s)
- Chaitali Ghosh
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065 India
| | - Naveen Kumar
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065 India
| | - Raja Babu Singh Kushwah
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065 India ,grid.264756.40000 0004 4687 2082Present Address: Department of Entomology, Texas A&M University, College Station, TX 7845 USA
| | - Soumya M.
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065 India
| | - Soumya Gopal Joshi
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065 India
| | - Chethan Kumar Ramanjini
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065 India
| | - Tejashwini Alalamath
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Phase I, Bangalore, 560100 India
| | - Subhashini Srinivasan
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Phase I, Bangalore, 560100 India
| | - Suresh Subramani
- grid.266100.30000 0001 2107 4242University of California San Diego, La Jolla, CA 92093 USA
| | - Sampath Kumar
- Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065, India.
| | - Sunita Swain
- Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
2
|
Khan J, Gholizadeh S, Zhang D, Wang G, Guo Y, Zheng X, Wu Z, Wu Y. Identification of a biological form in the Anopheles stephensi laboratory colony using the odorant-binding protein 1 intron I sequence. PLoS One 2022; 17:e0263836. [PMID: 35192647 PMCID: PMC8863247 DOI: 10.1371/journal.pone.0263836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Anopheles stephensi Listen (1901) is a major vector of malaria in Asia and has recently been found in some regions of Africa. The An. stepehnsi species complex is suspected to have three sibling species: type, intermediate, and mysorensis, each with its own vector competence to the malaria parasite and ecology. To identify the members of the species complex in our An. stephensi insectary colony, we used the morphological features of eggs and genetic markers such as AnsteObp1 (Anopheles stephensi odorant binding protein 1), mitochondrial oxidases subunit 1 and 2 (COI and COII), and nuclear internal transcribed spacer 2 locus (ITS2). Methods Eggs were collected from individual mosquitoes (n = 50) and counted for the number of ridges under stereomicroscope. Genomic DNA was extracted from female mosquitoes. After the amplification of partial fragments of AnsteObp1, COI, COII and ITS2 genes, the PCR products were purified and sequenced. Phylogenetic analysis was performed after aligning query sequences against the submitted sequences in GenBank using MEGA 7. Results The range of ridges number on each egg float was 12–13 that corresponds to the mysorensis form of An. stephensi. The generated COI, COII and ITS2 sequences showed 100%, 99.46% and 99.29% similarity with the sequences deposited for Chinese, Indian and Iranian strains of An. stephensi, respectively. All the generated AnsteObp1 intron I region sequences matched 100% with the sequences deposited for An. stephensi sibling species C (mysorensis form) from Iran and Afghanistan. Conclusions This manuscript precisely describes the morphological and molecular details of the ‘var mysorensis’ form of An. stephensi that could be exploited in elucidating its classification as well as in differentiation from other biotypes of the same or other anopheline species. Based on our findings, we recommend AnsteObp1 as a robust genetic marker for rapid and accurate discrimination (taxonomic identification) of the An. stephensi species complex, rather than the COI, COII, and ITS2 marker, which could only be utilized for interspecies (Anopheles) differentiation.
Collapse
Affiliation(s)
- Jehangir Khan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Disease, Guangzhou, Guangdong, China
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
- * E-mail: (JK); (ZW); (YW)
| | - Saber Gholizadeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Medical Entomology and Vector Control Department, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Dongjing Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Disease, Guangzhou, Guangdong, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| | - Gang Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Disease, Guangzhou, Guangdong, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| | - Yan Guo
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Disease, Guangzhou, Guangdong, China
| | - Xiaoying Zheng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Disease, Guangzhou, Guangdong, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Disease, Guangzhou, Guangdong, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
- * E-mail: (JK); (ZW); (YW)
| | - Yu Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Disease, Guangzhou, Guangdong, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
- * E-mail: (JK); (ZW); (YW)
| |
Collapse
|
3
|
Sanou A, Moussa Guelbéogo W, Nelli L, Hyacinth Toé K, Zongo S, Ouédraogo P, Cissé F, Mirzai N, Matthiopoulos J, Sagnon N, Ferguson HM. Evaluation of mosquito electrocuting traps as a safe alternative to the human landing catch for measuring human exposure to malaria vectors in Burkina Faso. Malar J 2019; 18:386. [PMID: 31791336 PMCID: PMC6889701 DOI: 10.1186/s12936-019-3030-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Measuring human exposure to mosquito bites is a crucial component of vector-borne disease surveillance. For malaria vectors, the human landing catch (HLC) remains the gold standard for direct estimation of exposure. This method, however, is controversial since participants risk exposure to potentially infected mosquito bites. Recently an exposure-free mosquito electrocuting trap (MET) was developed to provide a safer alternative to the HLC. Early prototypes of the MET performed well in Tanzania but have yet to be tested in West Africa, where malaria vector species composition, ecology and behaviour are different. The performance of the MET relative to HLC for characterizing mosquito vector population dynamics and biting behaviour in Burkina Faso was evaluated. METHODS A longitudinal study was initiated within 12 villages in Burkina Faso in October 2016. Host-seeking mosquitoes were sampled monthly using HLC and MET collections over 14 months. Collections were made at 4 households on each night, with METs deployed inside and outside at 2 houses, and HLC inside and outside at another two. Malaria vector abundance, species composition, sporozoite rate and location of biting (indoor versus outdoor) were recorded. RESULTS In total, 41,800 mosquitoes were collected over 324 sampling nights, with the major malaria vector being Anopheles gambiae sensu lato (s.l.) complex. Overall the MET caught fewer An. gambiae s.l. than the HLC (mean predicted number of 0.78 versus 1.82 indoors, and 1.05 versus 2.04 outdoors). However, MET collections gave a consistent representation of seasonal dynamics in vector populations, species composition, biting behaviour (location and time) and malaria infection rates relative to HLC. As the relative performance of the MET was somewhat higher in outdoor versus indoor settings, this trapping method slightly underestimated the proportion of bites preventable by LLINs compared to the HLC (MET = 82.08%; HLC = 87.19%). CONCLUSIONS The MET collected proportionately fewer mosquitoes than the HLC. However, estimates of An. gambiae s.l. density in METs were highly correlated with HLC. Thus, although less sensitive, the MET is a safer alternative than the HLC. Its use is recommended particularly for sampling vectors in outdoor environments where it is most sensitive.
Collapse
Affiliation(s)
- Antoine Sanou
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK.
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso.
| | - W Moussa Guelbéogo
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Luca Nelli
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - K Hyacinth Toé
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Soumanaba Zongo
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Pierre Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Fatoumata Cissé
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Nosrat Mirzai
- Bioelectronics Units, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Jason Matthiopoulos
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - N'falé Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
4
|
Houot B, Svetec N, Godoy-Herrera R, Ferveur JF. Effect of laboratory acclimation on the variation of reproduction-related characters in Drosophila melanogaster. J Exp Biol 2010; 213:2322-31. [DOI: 10.1242/jeb.041566] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The natural variation of sex-specific characters between populations can favor their behavioral isolation, eventually leading to the formation of new species. Marked variations for male courtship, mating and the production of sex pheromones – three complex characters potentially inducing sexual isolation – were found between Drosophila melanogaster populations of various origins acclimated for many generations in research laboratories. However, the natural variation of these three characters between natural populations and their evolution after long-term acclimation in the laboratory remains unknown. We measured many traits involved in these characters in six stocks initiated with distinct populations sampled in a restricted geographic area. Several sex-specific traits varied between stocks freshly brought back to the laboratory. After 100 generations spent in the laboratory without any experimental selection, traits varied in a strain-dependent manner. This variation was not related to a reduction of their variance except for copulation duration. This indicates that reproduction-related characters can diverge between neighboring D. melanogaster populations, and differently adapt to stable laboratory conditions.
Collapse
Affiliation(s)
- Benjamin Houot
- Unité Mixte de Recherche 6265 Associée au Centre National de la Recherche Scientifique, Université de Bourgogne, Faculté des Sciences, 6, Bd Gabriel, 21 000 Dijon, France
| | - Nicolas Svetec
- Unité Mixte de Recherche 6265 Associée au Centre National de la Recherche Scientifique, Université de Bourgogne, Faculté des Sciences, 6, Bd Gabriel, 21 000 Dijon, France
| | - Raùl Godoy-Herrera
- Instituto de Ciencias, Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago-7, Casilla 70061, Chile
| | - Jean-François Ferveur
- Unité Mixte de Recherche 6265 Associée au Centre National de la Recherche Scientifique, Université de Bourgogne, Faculté des Sciences, 6, Bd Gabriel, 21 000 Dijon, France
| |
Collapse
|
5
|
Alam MT, Bora H, Das MK, Sharma YD. The type and mysorensis forms of the Anopheles stephensi (Diptera: Culicidae) in India exhibit identical ribosomal DNA ITS2 and domain-3 sequences. Parasitol Res 2008; 103:75-80. [PMID: 18309520 DOI: 10.1007/s00436-008-0930-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 02/07/2008] [Indexed: 11/25/2022]
Abstract
Anopheles (Cellia) stephensi Liston 1901 is one of the major malaria vectors in the Indian subcontinent, Iran, and the Middle East. Three races in this species, namely A. stephensi stephensi (type form), A. stephensi variety mysorensis, and A. stephensi intermediate form, have earlier been reported by several investigators. We describe here the sequencing of the ribosomal DNA internal transcribed spacer 2 (ITS2) and domain-3 (D3) loci of the A. stephensi type and variety mysorensis forms. We also sequenced field-collected adult specimens of this mosquito from three different regions of India. Both forms of A. stephensi showed identical ITS2 and D3 sequences. We did not find any intraspecies sequence variation among the 70 specimens sequenced in this study. In contrast to the eight ITS2 haplotypes observed among Iranian A. stephensi population, we found only one ITS2 haplotype in India. This is the first time to our knowledge that the sequence of the D3 locus of A. stephensi is being reported here. In conclusion, the type and variety mysorensis forms of A. stephensi exhibit identical nucleotide sequences at their ITS2 and D3 loci.
Collapse
Affiliation(s)
- Mohammad Tauqeer Alam
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | |
Collapse
|
6
|
|