p, p'-Dichlorodiphenyldichloroethylene induces colorectal adenocarcinoma cell proliferation through oxidative stress.
PLoS One 2014;
9:e112700. [PMID:
25386960 PMCID:
PMC4227882 DOI:
10.1371/journal.pone.0112700]
[Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/10/2014] [Indexed: 12/22/2022] Open
Abstract
p, p'-Dichlorodiphenyldichloroethylene (DDE), the major metabolite of Dichlorodiphenyltrichloroethane (DDT), is an organochlorine pollutant and associated with cancer progression. The present study investigated the possible effects of p,p'-DDE on colorectal cancer and the involved molecular mechanism. The results indicated that exposure to low concentrations of p,p'-DDE from 10(-10) to 10(-7) M for 96 h markedly enhanced proliferations of human colorectal adenocarcinoma cell lines. Moreover, p,p'-DDE exposure could activate Wnt/β-catenin and Hedgehog/Gli1 signaling cascades, and the expression level of c-Myc and cyclin D1 was significantly increased. Consistently, p,p'-DDE-induced cell proliferation along with upregulated c-Myc and cyclin D1 were impeded by β-catenin siRNA or Gli1 siRNA. In addition, p,p'-DDE was able to activate NADPH oxidase, generate reactive oxygen species (ROS) and reduce GSH content, superoxide dismutase (SOD) and calatase (CAT) activities. Treatment with antioxidants prevented p,p'-DDE-induced cell proliferation and signaling pathways of Wnt/β-catenin and Hedgehog/Gli1. These results indicated that p,p'-DDE promoted colorectal cancer cell proliferation through Wnt/β-catenin and Hedgehog/Gli1 signalings mediated by oxidative stress. The finding suggests an association between p,p'-DDE exposure and the risk of colorectal cancer progression.
Collapse