1
|
Kardum Hjort C, Paris JR, Olsson P, Herbertsson L, de Miranda JR, Dudaniec RY, Smith HG. Genomic divergence and a lack of recent introgression between commercial and wild bumblebees ( Bombus terrestris). Evol Appl 2022; 15:365-382. [PMID: 35386397 PMCID: PMC8965379 DOI: 10.1111/eva.13346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/08/2021] [Accepted: 01/17/2022] [Indexed: 11/27/2022] Open
Abstract
The global movement of bees for agricultural pollination services can affect local pollinator populations via hybridization. When commercial bumblebees are of the same species but of different geographic origin, intraspecific hybridization may result in beneficial integration of new genetic variation, or alternatively may disrupt locally adapted gene complexes. However, neither the existence nor the extent of genomic introgression and evolutionary divergence between wild and commercial bumblebees is fully understood. We obtained whole-genome sequencing data from wild and commercial Bombus terrestris collected from sites in Southern Sweden with and without long-term use of commercially imported B. terrestris. We search for evidence of introgression, dispersal and genome-wide differentiation in a comparative genomic analysis of wild and commercial bumblebees. Commercial B. terrestris were found in natural environments near sites where commercial bumblebees were used, as well as drifting wild B. terrestris in commercial bumblebee colonies. However, we found no evidence for widespread, recent genomic introgression of commercial B. terrestris into local wild conspecific populations. We found that wild B. terrestris had significantly higher nucleotide diversity (Nei's pi, π), while the number of segregating sites (Watterson's theta, θw) was higher in commercial B. terrestris. A highly divergent region on chromosome 11 was identified in commercial B. terrestris and found to be enriched with structural variants. The genes present in this region are involved in flight muscle contraction and structure and pathogen immune response, providing evidence for differing evolutionary processes operating in wild and commercial B. terrestris. We did not find evidence for recent introgression, suggesting that co-occurring commercial B. terrestris have not disrupted evolutionary processes in wild B. terrestris populations.
Collapse
Affiliation(s)
- Cecilia Kardum Hjort
- Department of BiologyLund UniversityLundSweden
- School of Natural SciencesMacquarie UniversitySydneyAustralia
| | - Josephine R. Paris
- BiosciencesCollege of Life and Environmental ScienceUniversity of ExeterExeterUK
| | | | - Lina Herbertsson
- Centre for Environmental and Climate ScienceLund UniversityLundSweden
| | | | | | - Henrik G. Smith
- Department of BiologyLund UniversityLundSweden
- Centre for Environmental and Climate ScienceLund UniversityLundSweden
| |
Collapse
|
2
|
Russo L, de Keyzer CW, Harmon-Threatt AN, LeCroy KA, MacIvor JS. The managed-to-invasive species continuum in social and solitary bees and impacts on native bee conservation. CURRENT OPINION IN INSECT SCIENCE 2021; 46:43-49. [PMID: 33540109 DOI: 10.1016/j.cois.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Invasive bee species have negative impacts on native bee species and are a source of conservation concern. The invasion of bee species is mediated by the abiotic environment, biotic communities, and propagule pressure of the invader. Each of these factors is further affected by management, which can amplify the magnitude of the impact on native bee species. The ecological traits and behavior of invasive bees also play a role in whether and to what degree they compete with or otherwise negatively affect native bee species. The magnitude of impact of an invasive bee species relates both to its population size in the introduced habitat and the degree of overlap between its resources and the resources native bees require.
Collapse
Affiliation(s)
- Laura Russo
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, United States.
| | - Charlotte W de Keyzer
- Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | | | - Kathryn A LeCroy
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, United States; Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada; Department of Entomology, University of Illinois, Urbana, IL 61801, United States; Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903, United States; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - James Scott MacIvor
- Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| |
Collapse
|
3
|
Salvarrey S, Antúnez K, Arredondo D, Plischuk S, Revainera P, Maggi M, Invernizzi C. Parasites and RNA viruses in wild and laboratory reared bumble bees Bombus pauloensis (Hymenoptera: Apidae) from Uruguay. PLoS One 2021; 16:e0249842. [PMID: 33901226 PMCID: PMC8075198 DOI: 10.1371/journal.pone.0249842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Bumble bees (Bombus spp.) are important pollinators insects involved in the maintenance of natural ecosystems and food production. Bombus pauloensis is a widely distributed species in South America, that recently began to be managed and commercialized in this region. The movement of colonies within or between countries may favor the dissemination of parasites and pathogens, putting into risk while populations of B. pauloensis and other native species. In this study, wild B. pauloensis queens and workers, and laboratory reared workers were screened for the presence of phoretic mites, internal parasites (microsporidia, protists, nematodes and parasitoids) and RNA viruses (Black queen cell virus (BQCV), Deformed wing virus (DWV), Acute paralysis virus (ABCV) and Sacbrood virus (SBV)). Bumble bee queens showed the highest number of mite species, and it was the only group where Conopidae and S. bombi were detected. In the case of microsporidia, a higher prevalence of N. ceranae was detected in field workers. Finally, the bumble bees presented the four RNA viruses studied for A. mellifera, in proportions similar to those previously reported in this species. Those results highlight the risks of spillover among the different species of pollinators.
Collapse
Affiliation(s)
| | - Karina Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Daniela Arredondo
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Santiago Plischuk
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE) (CONICET- UNLP), La Plata, Argentina
| | - Pablo Revainera
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | | |
Collapse
|
4
|
Carrasco L, Papeş M, Lochner EN, Ruiz BC, Williams AG, Wiggins GJ. Potential regional declines in species richness of tomato pollinators in North America under climate change. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02259. [PMID: 33179379 DOI: 10.1002/eap.2259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
About 70% of the world's main crops depend on insect pollination. Climate change is already affecting the abundance and distribution of insects, which could cause geographical mismatches between crops and their pollinators. Crops that rely primarily on wild pollinators (e.g., crops that cannot be effectively pollinated by commercial colonies of honey bees) could be particularly in jeopardy. However, limited information on plant-pollinator associations and pollinator distributions complicate the assessment of climate change impacts on specific crops. To study the potential impacts of climate change on pollination of a specific crop in North America, we use the case of open-field tomato crops, which rely on buzz pollinators (species that use vibration to release pollen, such as bumble bees) to increase their production. We aimed to (1) assess potential changes in buzz pollinator distribution and richness, and (2) evaluate the overlap between areas with high densities of tomato crops and high potential decrease in richness. We used baseline (1961-1990) climate and future (2050s and 2080s) climatic projections in ecological niche models fitted with occurrences of wild bees, documented in the literature as pollinators of tomatoes, to estimate the baseline and future potential distribution of suitable climatic conditions of targeted species and to create maps of richness change across North America. We obtained reliable models for 15 species and found important potential decreases in the distribution of some pollinators (e.g., Lasioglossum pectorale and Augochlorella aurata). We observed geographical discrepancies in the projected change in species richness across North America, detecting important declines in the eastern United States (up to 11 species decrease for 2050s). After overlapping the maps of species richness change with a tomato crop map for the United States, we found spatial correspondence between richness declines and areas with high concentration of tomato crops. Disparities in the effects of climate change on the potential future distribution of different wild pollinators and geographical variation in richness highlight the importance of crop-specific studies. Our study also emphasizes the challenges of compiling and modeling crop-specific pollinator data and the need to improve our understanding of current distribution of pollinators and their community dynamics under climate change.
Collapse
Affiliation(s)
- Luis Carrasco
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee, 37996, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Monica Papeş
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee, 37996, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Ellie N Lochner
- Department of Mathematics, University of Wisconsin, Eau Claire, Wisconsin, 54702, USA
| | - Brandyn C Ruiz
- Department of Mathematics, Arizona State University, Tempe, Arizona, 85281, USA
| | - Abigail G Williams
- Department of Mathematics, Salem College, Winston-Salem, North Carolina, 27101, USA
| | - Gregory J Wiggins
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
5
|
Mullins JL, Strange JP, Tripodi AD. Why Are Queens Broodless? Failed Nest Initiation Not Linked to Parasites, Mating Status, or Ovary Development in Two Bumble Bee Species of Pyrobombus (Hymenoptera: Apidae: Bombus). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:575-581. [PMID: 31814010 DOI: 10.1093/jee/toz330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Bumble bees (Bombus [Hymenoptera: Apidae]) are important pollinators for agricultural crops, which has led to their commercial domestication. Despite their importance, little is known about the reproductive biology of bumble bees native to North America. The Hunt bumble bee (Bombus huntii Greene [Hymenoptera: Apidae]) and the Vosnesensky bumble bee (Bombus vosnesenskii Radoszkowski [Hymenoptera: Apidae] are native candidates for commercial production in western North America due to their efficacy in providing commercial pollination services. Availability of pollinators native to the region in which services would be provided would minimize the likelihood of introducing exotic species and spreading novel disease. Some parasites are known to affect bumble bee reproduction, but little is known about their prevalence in North America or how they affect queen success. Only 38% of wild-caught B. huntii and 51% wild-caught B. vosnesenskii queens collected between 2015 and 2017 initiated nests in the laboratory. Our objective was to identify causal factors leading to a queen's inability to oviposit. To address this, we dissected each broodless queen and diagnosed diseases, assessed mating status, and characterized ovary development. Nematodes, arthropods, and microorganisms were detected in both species. Overall, 20% of queens were infected by parasites, with higher rates in B. vosnesenskii. Over 95% of both species were mated, and over 88% had developed ovaries. This suggests that parasitism and mating status were not primary causes of broodlessness. Although some failure to nest can be attributed to assessed factors, additional research is needed to fully understand the challenges presented by captive rearing.
Collapse
Affiliation(s)
- Jessica L Mullins
- United States Department of Agriculture, Agricultural Research Service-Pollinating Insects Research Unit, Logan, UT
- University of Colorado Museum of Natural History, 265 UCB-MCOL, Boulder, CO
| | - James P Strange
- United States Department of Agriculture, Agricultural Research Service-Pollinating Insects Research Unit, Logan, UT
- Department of Entomology, The Ohio State University, 216 Kottman Hall, Columbus, OH
| | - Amber D Tripodi
- United States Department of Agriculture, Agricultural Research Service-Pollinating Insects Research Unit, Logan, UT
| |
Collapse
|
6
|
Belsky J, Joshi NK. Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. INSECTS 2019; 10:E233. [PMID: 31374933 PMCID: PMC6723792 DOI: 10.3390/insects10080233] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 01/14/2023]
Abstract
Large-scale declines in bee abundance and species richness over the last decade have sounded an alarm, given the crucial pollination services that bees provide. Population dips have specifically been noted for both managed and feral bee species. The simultaneous increased cultivation of bee-dependent agricultural crops has given rise to additional concern. As a result, there has been a surge in scientific research investigating the potential stressors impacting bees. A group of environmental and anthropogenic stressors negatively impacting bees has been isolated. Habitat destruction has diminished the availability of bee floral resources and nest habitats, while massive monoculture plantings have limited bee access to a variety of pollens and nectars. The rapid spread and increased resistance buildup of various bee parasites, pathogens, and pests to current control methods are implicated in deteriorating bee health. Similarly, many pesticides that are widely applied on agricultural crops and within beehives are toxic to bees. The global distribution of honey bee colonies (including queens with attendant bees) and bumble bee colonies from crop to crop for pollination events has been linked with increased pathogen stress and increased competition with native bee species for limited resources. Climatic alterations have disrupted synchronous bee emergence with flower blooming and reduced the availability of diverse floral resources, leading to bee physiological adaptations. Interactions amongst multiple stressors have created colossal maladies hitting bees at one time, and in some cases delivering additive impacts. Initiatives including the development of wild flower plantings and assessment of pesticide toxicity to bees have been undertaken in efforts to ameliorate current bee declines. In this review, recent findings regarding the impact of these stressors on bees and strategies for mitigating them are discussed.
Collapse
Affiliation(s)
- Joseph Belsky
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA
| | - Neelendra K Joshi
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA.
| |
Collapse
|
7
|
Aizen MA, Smith‐Ramírez C, Morales CL, Vieli L, Sáez A, Barahona‐Segovia RM, Arbetman MP, Montalva J, Garibaldi LA, Inouye DW, Harder LD. Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13121] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Marcelo A. Aizen
- Grupo de Ecología de la PolinizaciónINIBIOMACONICET‐Universidad Nacional del Comahue San Carlos de Bariloche Rio Negro Argentina
| | - Cecilia Smith‐Ramírez
- Departamento de Ciencias Biológicas y BiodiversidadUniversidad de Los Lagos (ULA) Osorno Chile
- Instituto de Ecología y Biodiversidad – Chile (IEB) Santiago Chile
- Facultad de Ciencias ForestalesUniversidad Austral de Chile Valdivia Chile
| | - Carolina L. Morales
- Grupo de Ecología de la PolinizaciónINIBIOMACONICET‐Universidad Nacional del Comahue San Carlos de Bariloche Rio Negro Argentina
| | - Lorena Vieli
- Departamento de Ciencias ForestalesUniversidad de La Frontera Temuco Chile
| | - Agustín Sáez
- Grupo de Ecología de la PolinizaciónINIBIOMACONICET‐Universidad Nacional del Comahue San Carlos de Bariloche Rio Negro Argentina
| | - Rodrigo M. Barahona‐Segovia
- Laboratorio de Ecología de Ambientes FragmentadosFacultad de Ciencias Veterinarias y PecuariasUniversidad de Chile Santiago Chile
| | - Marina P. Arbetman
- Grupo de Ecología de la PolinizaciónINIBIOMACONICET‐Universidad Nacional del Comahue San Carlos de Bariloche Rio Negro Argentina
- Instituto de Investigaciones en Recursos NaturalesAgroecología y Desarrollo Rural (IRNAD)Sede AndinaUniversidad Nacional de Río Negro (UNRN) San Carlos de Bariloche Río Negro Argentina
| | | | - Lucas A. Garibaldi
- Instituto de Investigaciones en Recursos NaturalesAgroecología y Desarrollo Rural (IRNAD)Sede AndinaUniversidad Nacional de Río Negro (UNRN) San Carlos de Bariloche Río Negro Argentina
| | - David W. Inouye
- Rocky Mountain Biological Laboratory Crested Butte CO USA
- Department of BiologyUniversity of Maryland College Park MD USA
| | - Lawrence D. Harder
- Department of Biological SciencesUniversity of Calgary Calgary Alberta Canada
| |
Collapse
|