1
|
Hofacre CL, Baxter J, Berghaus R, Bonato MA, de Souza FA. Yeast cell wall supplementation affects the Salmonella enteretidis load in the ceca and ovaries of layer pullets. Poult Sci 2024; 103:104187. [PMID: 39197339 PMCID: PMC11395752 DOI: 10.1016/j.psj.2024.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Salmonella enteretidis (SE) has a great propensity to translocate from the cecum into internal organs such as the spleen and liver. However, a major concern is the ability of SE to colonize the ovaries. This study aimed to evaluate the efficacy of cell walls from Saccharomyces cerevisiae to control the Salmonella load in the ceca and ovaries of commercial layer pullets. Ten-week-old layer pullets were divided into 2 groups: one group was fed a control diet with commercial feed without additives, and another group was fed the same diet supplemented with 0.5 kg/metric ton of yeast cell walls (YCWs). At 16 wk of age, the birds in both groups were challenged with 3.0 × 109 CFU/mL SE by oral gavage. The birds were euthanized on d 7 and 14 postchallenge to collect the ceca and ovaries for Salmonella load determination. The results demonstrated that there were no statistical differences in ovary SE infection rates. The trend in the prevalence of SE positivity in the ovaries was similar at 14 d, with 2.1% (YCW pullets) to 4.2% positive for the ovaries of the nontreated pullets. There was also no significant difference in the SE log10 MPN/gram between the YCW and the control groups. In the ceca, the high level of SE (3.0 × 109 cfu/pullet), which results in ovarian transmission, causes high intestinal tract inflammation. There was a significant difference in the prevalence of SE in the ceca at 7 d postchallenge but not at 14 d postchallenge. In conclusion, the reduction in Salmonella load observed in the ceca on d 7 in this study shows the potential of YCW supplementation for reducing Salmonella colonization in poultry.
Collapse
Affiliation(s)
| | - Jennie Baxter
- Southern Poultry Research Group, INC., Watkinsville, GA 30677
| | - Roy Berghaus
- Department of Population Health, The University of Georgia, Athens, GA 30607; Department of Population Health, Food Animal Health and Management, Poultry Diagnostic and Research Center, Southeastern Cooperative Wildlife Disease Study, The University of Georgia, Athens, GA 30607
| | | | | |
Collapse
|
2
|
Ramatla T, Khasapane NG, Mlangeni LN, Mokgokong P, Ramaili T, Ndou R, Nkhebenyane JS, Lekota K, Thekisoe O. Detection of Salmonella Pathogenicity Islands and Antimicrobial-Resistant Genes in Salmonella enterica Serovars Enteritidis and Typhimurium Isolated from Broiler Chickens. Antibiotics (Basel) 2024; 13:458. [PMID: 38786186 PMCID: PMC11117945 DOI: 10.3390/antibiotics13050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Rapid growth in commercial poultry production is one of the major sources of Salmonella infections that leads to human salmonellosis. The two main Salmonella enterica serovars associated with human salmonellosis are enteritidis and typhimurium. The aim of this study was to determine the prevalence of S. enterica serovars Enteritidis and S. Typhimurium as well as their Salmonella pathogenicity islands (SPI) and antibiotic resistance profiles in broiler chicken feces from slaughterhouses. A total of 480 fecal samples from broiler chickens that were grouped into 96 pooled samples were identified to have Salmonella spp. using the invA gene, whilst the Spy and sdfI genes were used to screen for the presence of S. Enteritidis and S. Typhimurium serovars, respectively, by polymerase chain reaction (PCR) assays. The isolates were also screened for the presence of Salmonella pathogenicity islands (SPIs) using PCR. The disc diffusion assay was performed to determine the antibiotic resistance profiles of the isolates. A total of 36 isolates were confirmed as Salmonella spp. through amplification of the invA gene. Out of 36 confirmed Salmonella spp. a total of 22 isolates were classified as S. Enteritidis (n = 8) and were S. Typhimurium (n = 14) serovars. All (n = 22) S. Enteritidis and S. Typhimurium isolates possessed the hilA (SPI-1), ssrB (SPI-2) and pagC (SPI-11) pathogenicity islands genes. Amongst these serovars, 50% of the isolates (n = 11/22) were resistant to tetracycline and nalidixic acid. Only 22% of the isolates, S. Typhimurium (13.6%) and S. Enteritidis (9.1%) demonstrated resistance against three or more antibiotic classes. The most detected antibiotic resistance genes were tet(K), mcr-1, sulI and strA with 13 (59.1%), 9 (40.9%), 9 (40.9%) and 7 (31.8%), respectively. The findings of this study revealed that S. Typhimurium is the most prevalent serotype detected in chicken feces. To reduce the risk to human health posed by salmonellosis, a stringent public health and food safety policy is required.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa; (T.R.); (J.S.N.)
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Ntelekwane G. Khasapane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa; (T.R.); (J.S.N.)
| | - Lungile N. Mlangeni
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Prudent Mokgokong
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Taole Ramaili
- Department of Animal Health, School of Agriculture, North-West University, Mmabatho 2735, South Africa;
| | - Rendani Ndou
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Jane S. Nkhebenyane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa; (T.R.); (J.S.N.)
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| |
Collapse
|
3
|
Song D, Wang X, Ma Y, Liu NN, Wang H. Beneficial insights into postbiotics against colorectal cancer. Front Nutr 2023; 10:1111872. [PMID: 36969804 PMCID: PMC10036377 DOI: 10.3389/fnut.2023.1111872] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and life-threatening cancer types with limited therapeutic options worldwide. Gut microbiota has been recognized as the pivotal determinant in maintaining gastrointestinal (GI) tract homeostasis, while dysbiosis of gut microbiota contributes to CRC development. Recently, the beneficial role of postbiotics, a new concept in describing microorganism derived substances, in CRC has been uncovered by various studies. However, a comprehensive characterization of the molecular identity, mechanism of action, or routes of administration of postbiotics, particularly their role in CRC, is still lacking. In this review, we outline the current state of research toward the beneficial effects of gut microbiota derived postbiotics against CRC, which will represent the key elements of future precision-medicine approaches in the development of novel therapeutic strategies targeting gut microbiota to improve treatment outcomes in CRC.
Collapse
Affiliation(s)
| | | | | | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Kiarie EG, Steelman S, Martinez M. Does supplementing β-mannanase modulate the feed-induced immune response and gastrointestinal ecology in poultry and pigs? An appraisal. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.875095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The provision of adequate and balanced nutrients is critical for efficient and profitable animal protein production. However, non-nutritive components in feedstuffs can elicit responses that can negatively impact nutrient utilization efficiency. For example, dietary β-mannans are recognizable by cell surface mannose receptors are pivotal for diverse cellular functions. This review will evaluate the physiological implications of dietary native β-mannans, the utility of supplemental feed β-mannanase in hydrolyzing β-mannans, and subsequent metabolic responses. Dietary native β-mannans have been implicated in inadvertent stimulation of immune response through a phenomenon called the feed-induced immune response (FIIR), that has been associated with intestinal inflammation and depression in animal performance. Supplemental β-mannanase blunted the FIIR by hydrolyzing native β-mannans to smaller fragments with a reduced ability to stimulate the innate immune system as indicated by the modulation of oxidative stress, mucosal permeability, and blood concentration of acute phase proteins and immunoglobulins in broilers and piglet models. Moreover, β-mannanase hydrolysis of native β-mannans to mannooligosaccharides (MOS) impacted gastrointestinal microbial ecology. Indeed, β-mannanase-derived MOS reduced the concentration of pathogenic bacteria such as Escherichia coli and Salmonella and increased the production of short-chain fatty acids in gastrointestinal tracts of various animal models. Consequently, by hydrolyzing native β-mannans, supplemental β-mannanase may have nutritional, metabolic, and microbial ecology benefits. In summary, integrating multi-functional feed additives such as β-mannanase into feeding programs for monogastric animals will be critical for efficient and sustainable animal protein production in the context of evolving challenges such as the mandated elimination of use of antibiotics for growth promotion.
Collapse
|
5
|
Strain R, Stanton C, Ross RP. Effect of diet on pathogen performance in the microbiome. MICROBIOME RESEARCH REPORTS 2022; 1:13. [PMID: 38045644 PMCID: PMC10688830 DOI: 10.20517/mrr.2021.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/05/2023]
Abstract
Intricate interactions among commensal bacteria, dietary substrates and immune responses are central to defining microbiome community composition, which plays a key role in preventing enteric pathogen infection, a dynamic phenomenon referred to as colonisation resistance. However, the impact of diet on sculpting microbiota membership, and ultimately colonisation resistance has been overlooked. Furthermore, pathogens have evolved strategies to evade colonisation resistance and outcompete commensal microbiota by using unique nutrient utilisation pathways, by exploiting microbial metabolites as nutrient sources or by environmental cues to induce virulence gene expression. In this review, we will discuss the interplay between diet, microbiota and their associated metabolites, and how these can contribute to or preclude pathogen survival.
Collapse
Affiliation(s)
- Ronan Strain
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 K8AF, Ireland
| |
Collapse
|
6
|
Gomez-Osorio LM, Nielsen JU, Martens HJ, Wimmer R. Upgrading the Nutritional Value of PKC Using a Bacillus subtilis Derived Monocomponent β-Mannanase. Molecules 2022; 27:563. [PMID: 35056877 PMCID: PMC8781566 DOI: 10.3390/molecules27020563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Palm kernel cake (PKC) is an abundant side stream that can only be added to non-ruminant feed in small concentrations due to its content of antinutritional factors, mainly galactomannan, which cannot be digested by non-ruminants. β-mannanases can be added to partially hydrolyze galactomannan to form mannose oligosaccharides, which are known to be prebiotic. We here investigate the action of a β-mannanase from B. subtilis on PKC by colorimetry, NMR and fluorescence microscopy. The amount of mannan oligosaccharides in solution was significantly increased by the β-mannanase and their degree of polymerization (DP) was significantly reduced. There was a dose-response behavior in that larger β-mannanase concentrations increased the amount of soluble mannose oligosaccharides while reducing their average DP. Using confocal immunofluorescence microscopy, solubilization of galactomannan in PKC was clearly visualized. Images show a clear disruption of the cellulose and galactomannan structures of the PKC cell walls. We thus show in this study that using commercial dosages of β-mannanase on PKC can lead to formation of prebiotic compounds. Thus, this study suggests that utilization of PKC in poultry feed formulation might be increased by addition of a β-mannanase and would improve the return on investment.
Collapse
Affiliation(s)
- Luis-Miguel Gomez-Osorio
- Alura Animal Health and Nutrition, Medellín 110921, Colombia;
- CIBAV Research Group, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín 050034, Colombia
| | - Janni Ulnits Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers vej 7H, 9220 Aalborg, Denmark;
| | - Helle Jakobe Martens
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg, Denmark;
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers vej 7H, 9220 Aalborg, Denmark;
| |
Collapse
|
7
|
van Kuijk SJA, Han Y. Efficacy of a Synergistic Blend of Organic Acids and ß-1,4 Mannobiose on Cecal Salmonella Counts and Growth Performance in Salmonella Challenged Broiler Chickens: A Meta-Analysis. Animals (Basel) 2021; 11:2988. [PMID: 34680007 PMCID: PMC8532667 DOI: 10.3390/ani11102988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022] Open
Abstract
This study aimed at investigating the effect of a functional synergistic feed additive blend, containing organic acids and ß-1,4 mannobiose, on cecal Salmonella counts and growth performance of broiler chickens. A meta-analysis combining 13 individual studies, executed in Salmonella-challenged broilers comparing a control diet with and without the synergistic blend, was performed. Cecal Salmonella colonies and overall growth performance were measured. Raw data from all studies were combined and analyzed using PROC MIXED in SAS, taking the within and between-study variation into account. In the first 14 days post-inoculation (DPI), cecal Salmonella was reduced by 0.429 log CFU/g (p = 0.011, n = 10 comparisons from five studies) when feeding the synergistic blend compared to the control group. During 15-34 DPI, the overall means were not different between treatments (0.069 log CFU/g; p = 0.519, n = 12 comparisons from eight studies). The feed conversion ratio was improved when feeding the synergistic blend compared to the control diet (1.474 vs. 1.482, respectively; p = 0.002). In conclusion, feeding a synergistic blend, containing organic acids and ß-1,4 mannobiose amongst other ingredients, reduced cecal Salmonella counts during the first 14 DPI and improved growth performance of Salmonella challenged broilers compared to a control diet.
Collapse
Affiliation(s)
| | - Yanming Han
- Trouw Nutrition R&D, Stationsstraat 77, 3811 MH Amersfoort, The Netherlands
| |
Collapse
|
8
|
Fukui K, Saburi W, Ibuki M, Tsumura K, Mori H. Preliminary evaluation of colorimetric and HPLC-based methods for quantifying β-(1→4)-mannobiose in a crude material. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kensuke Fukui
- Research Institute for Creating the Future, Fuji Oil Holdings Inc
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University
| | | | - Kazunobu Tsumura
- Research Institute for Creating the Future, Fuji Oil Holdings Inc
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University
| |
Collapse
|
9
|
The role of oligosaccharides and polysaccharides of xylan and mannan in gut health of monogastric animals. J Nutr Sci 2020; 9:e21. [PMID: 32595966 PMCID: PMC7303790 DOI: 10.1017/jns.2020.14] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Apart from its role as a digestive and absorptive organ, the gastrointestinal (GI) tract is a vital immune organ that encompasses roughly 70 % of the total immune cells of the body. As such, the physical, chemical and nutrient composition of the diet influences overall GI function, effectively as an immune organ. With the improvement in feed technology, agro-industrial co-products that are high in fibre have been widely used as a feed ingredient in the diets of pigs and poultry. Arabinoxylan (AX) and mannan are the most abundant hemicellulosic polysaccharides present in cereal grain and co-product ingredients used in the livestock industry. When monogastric animals consume diets containing high amounts of AX and mannans, stimulation of GI immune cells may occur. This involves the activation of several cellular and molecular pathways of the immune system and requires a considerable amount of energy and nutrients to be expended by the animal, which may ultimately influence overall health and growth performance of animals. Therefore, a better understanding of the role of AX and mannan in immune modulation will be helpful in modulating untoward GI immune responses, thereby minimising nutrient and energy expenditure toward this effort. This review will summarise pertinent research on the role of oligosaccharides and polysaccharides containing AX and mannans in immune modulation in order to preserve gut integrity.
Collapse
Key Words
- A:X, arabinose:xylose
- AX, arabinoxylan
- Arabinoxylan
- CLTD, carbohydrate recognition domain
- DC, dendritic cells
- GGM, galactoglucomannan
- GH, glycosidic hydrolase
- GI, gastrointestinal
- Immune modulation
- MBL, mannose-binding lectin
- MOS, mannan oligosaccharide
- MR, mannose receptor
- Mannan
- Oligosaccharides
- PAMP, pathogen-associated molecular pattern
- Polysaccharides
- TLR, toll-like receptor
- XOS, xylo-oligosaccharide
Collapse
|
10
|
Fabà L, Litjens R, Allaart J, van den Hil PR. Feed additive blends fed to nursery pigs challenged with Salmonella. J Anim Sci 2020; 98:5682637. [PMID: 31863091 PMCID: PMC6978908 DOI: 10.1093/jas/skz382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Salmonella in pigs is a concern for human foodborne salmonellosis. Dietary fungal fermented products, coated butyrate, and organic acids (OAs) may be promising control strategies. The objectives of this study were (i) to evaluate in vitro binding affinity of Salmonella enterica serovar Typhimurium (S. Typh) and Enteritidis (S. Ent), and enterotoxigenic Escherichia coli (ETEC) F4 or F18 to mannan-rich hydrolyzed copra meal (MCM) and fermented rye (FR) with Agaricus subrufescens; and (ii) to assess MCM and FR efficacy to control in vivo S. Typh shedding when combined with OAs and compared with coated butyrate strategy. A 31-d study included 32 pigs [6.29 ± 0.76 kg BW] individually housed and distributed into four dietary treatments: control diet; OA.BU, 4 kg/t OA plus 6 kg/t coated butyrate; OA.MCM, 4 kg/t OA plus 1 kg/t MCM; and OA.FR, 4 kg/t OA plus 2 kg/t FR. All pigs were challenged for 7 d with 1 mL S. Typh (109 colony forming units daily) at 10 d postweaning. Temperature and fecal samples were collected before and after challenge, and fecal Salmonella shedding quantified. Diarrhea scores were monitored daily and growth performance was evaluated weekly. In vitro, culture with MCM and FR showed significant (P < 0.01) binding affinity for both S. Typh and S. Ent, but not for ETEC F4 and F18. In vivo, pigs fed OA.MCM and OA.FR had lower (P < 0.05) shedding and day 3 peak shedding of S. Typh after infections than pigs fed control and OA.BU diets. Pigs fed OA.FR diet tended to have an 18% increase (P = 0.068) in BW on day 14 post first inoculation compared with control and OA.BU, and 19% increased (P = 0.093) final BW at day 21 compared with control. Diarrhea frequency post infection was overall lower (P = 0.006) for OA.FR (18.9%) than OA.BU (44.8%) and OA.MCM (41.7%) while control (28.7%) was not different. In conclusion, FR and MCM show in vitro-binding affinity to Salmonella enterica serovars Typh and Ent. Feeding FR or MCM combined with OA to nursery pigs reduces the peak and averages S. Typh shedding compared with control. Fermented rye with OA tends to improve pig performance after S. Typh challenge.
Collapse
Affiliation(s)
- Lluís Fabà
- Trouw Nutrition R&D, Amersfoort MH, The Netherlands
- Corresponding author:
| | | | - Janneke Allaart
- Faculty of Veterinary Medicine, Utrecht University, Utrecht CS, The Netherlands
| | | |
Collapse
|
11
|
Wang J, Dai D, Zhang HJ, Wu SG, Han YM, Wu YY, Qi GH. Organic Acids Modulate Systemic Metabolic Perturbation Caused by Salmonella Pullorum Challenge in Early-Stage Broilers. Front Physiol 2019; 10:1418. [PMID: 31803069 PMCID: PMC6873883 DOI: 10.3389/fphys.2019.01418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023] Open
Abstract
The objectives of this study were to determine the protective effects of organic acids (OA) in broilers exposed to Salmonella Pullorum challenge at early stage and to explore the potential benefits of OA by metabolomics analysis. The treatment groups included non-challenged, S. Pullorum-challenged, challenged group supplemented with virginiamycin, challenged group supplemented with OA in drinking water, challenged group supplemented with OA in feed, and challenged group supplemented with OA in combination in drinking water and feed. Results showed that early Salmonella challenge induced an acute systemic infection of broilers in the starter phase, followed by the grower phase without triggering clinical signs. OA supplementation promoted growth during the grower phase, and while OA in water contributed more, the positive effects of OA in combination were comparable to those of virginiamycin supplementation in challenged birds. Furthermore, OA could modulate the systemic metabolic perturbation caused by challenge as it alleviated stress responses mediated by steroid hormone, potentially attenuated antioxidant or immune defense, and modified intestinal microbiota metabolism. These results show a metabolic mechanism that may partly explain the potential benefits of OA in Salmonella challenged birds, and may contribute to the use of OA to control or reduce S. Pullorum infection in farm animals.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Dai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Jun Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | - Guang-Hai Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
|
13
|
|
14
|
Saeed M, Ayaşan T, Alagawany M, El-Hack MEA, Abdel-Latif MA, Patra AK. The Role of ß-Mannanase (Hemicell) in Improving Poultry Productivity, Health and Environment. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2019-1001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M Saeed
- Cholistan University of Veterinary and Animal Sciences, Pakistan
| | - T Ayaşan
- Osmaniye Korkut Ata University, Turkey
| | | | | | | | - AK Patra
- West Bengal University of Animal and Fishery Sciences, India
| |
Collapse
|
15
|
Elshopakey GE, Risha EF, Abdalla OA, Okamura Y, Hanh VD, Ibuki M, Sudhakaran R, Itami T. Enhancement of immune response and resistance against Vibrio parahaemolyticus in kuruma shrimp (Marsupenaeus japonicus) by dietary supplementation of β-1,4-mannobiose. FISH & SHELLFISH IMMUNOLOGY 2018; 74:26-34. [PMID: 29288050 DOI: 10.1016/j.fsi.2017.12.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/10/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Supplementation of prebiotic carbohydrates can act as a potent immunomodulator and have the efficacy to induce immune-related genes which are involved in host defense. Pure β-1,4-mannobiose (MNB) showed activation of prophenoloxidase system of shrimp hemocytes in vitro. The resistance of kuruma shrimp Marsupenaeus japonicus against Vibrio parahaemolyticus was examined after the shrimp were fed with 0 (control), 0.02, 0.2, and 2% MNB supplemented diets. The results showed significantly higher survival rates in MNB supplemented shrimp than those of the control one from 2 to 12 days post challenge. In another experiment, the hemocyte count, ROS production, phagocytic, phenoloxidase and bactericidal activities, and expression of immune-related genes were investigated in the control and MNB supplemented groups at day 1, 4, 6, 8 and 11 of the feeding. These immune parameters were significantly enhanced in MNB supplemented groups. Furthermore, the gene expression analysis showed that transcripts of lysozyme, crustin, penaeidin and TNF were significantly up-regulated in hemolymph, lymphoid organs and intestines of MNB treated shrimp. Overall, the results provided evidence that MNB supplementation could improve the immune response and increase shrimp resistance against V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Gehad E Elshopakey
- Department of Marine Biology and Environmental Science, University of Miyazaki, Miyazaki, Japan; Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Engy F Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abdalla
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Yo Okamura
- Department of Marine Biology and Environmental Science, University of Miyazaki, Miyazaki, Japan
| | - Vu Duc Hanh
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | | | - Raja Sudhakaran
- Aquaculture Biotechnology Laboratory, School of Bio Sciences and Technology, VIT University, India
| | - Toshiaki Itami
- Department of Marine Biology and Environmental Science, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
16
|
Salmosan, a β-galactomannan-rich product, in combination with Lactobacillus plantarum contributes to restore intestinal epithelial barrier function by modulation of cytokine production. J Nutr Biochem 2017; 41:20-24. [DOI: 10.1016/j.jnutbio.2016.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/25/2016] [Accepted: 11/14/2016] [Indexed: 01/24/2023]
|
17
|
Allaart J, Silva C, van der Heijden M, Roubos-van den Hil P. Novel feed additives controlling Salmonella typhimurium in pigs. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/anv57n12ab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Navidshad B, Liang J, Jahromi M, Akhlaghi A, Abdullah N. Effects of enzymatic treatment and shell content of palm kernel expeller meal on performance, nutrient digestibility, and ileal bacterial population in broiler chickens. J APPL POULTRY RES 2016. [DOI: 10.3382/japr/pfw029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Rezaei S, Faseleh Jahromi M, Liang JB, Zulkifli I, Farjam AS, Laudadio V, Tufarelli V. Effect of oligosaccharides extract from palm kernel expeller on growth performance, gut microbiota and immune response in broiler chickens. Poult Sci 2015; 94:2414-20. [DOI: 10.3382/ps/pev216] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022] Open
|
20
|
Wang S, Wang J, Mou H, Luo B, Jiang X. Inhibition of adhesion of intestinal pathogens (Escherichia coli, Vibrio cholerae, Campylobacter jejuni, and Salmonella Typhimurium) by common oligosaccharides. Foodborne Pathog Dis 2015; 12:360-5. [PMID: 25692734 DOI: 10.1089/fpd.2014.1835] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inhibition of the binding of pathogenic adhesins to host glycans by suitable oligosaccharides forms the basis of antiadhesion therapies. Experiments were carried out to study the inhibition capability of oligosaccharides on the adhesion of four microorganisms (Escherichia coli, Vibrio cholerae, Campylobacter jejuni, and Salmonella Typhimurium) to HT-29 cells. Results showed that, in the absence of oligosaccharides, all of the four pathogens efficiently adhered to the cells. Cell adhesion with different bacteria was inhibited by distinct oligosaccharides (e.g., the adhesion number relative to control of V. cholerae could be significantly decreased by pectin oligosaccharide and chitooligosaccharide to about 16.1% and 18.9%, respectively). Saturation studies showed that the extent of antiadhesive effect for most of the suitable carbohydrates was dependent on their concentration. The observations from the study suggest that various carbohydrates may have antiadhesive activity and may be useful in future therapeutic study.
Collapse
Affiliation(s)
- Shanshan Wang
- 1 Department of Food Science and Engineering, Ocean University of China , Qingdao, China
| | | | | | | | | |
Collapse
|
21
|
Ebrahimvandi Z, Khaki P, Darvishi S, Moradi Bidhendi S. PCR-RFLP Analysis of a fliC Gene Fragment in Avian Salmonella Isolates. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2014. [DOI: 10.17795/ijep18831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Liu X, Byrd JA, Farnell M, Ruiz-Feria CA. Arginine and vitamin E improve the immune response after a Salmonella challenge in broiler chicks. Poult Sci 2014; 93:882-90. [PMID: 24706965 DOI: 10.3382/ps.2013-03723] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two experiments were conducted to evaluate the effects of Arg, vitamin E (VE), and mannanoligosaccharide (MOS) on the immune response and clearance of Salmonella in broiler chickens. In each experiment, 1-d-old chicks (n = 160) were randomly distributed into 4 groups: antibiotic-free diet (negative control, CTL-), antibiotic-supplemented diet (positive control, CTL+), antibiotic free-diet plus Arg and VE (AVE), or antibiotic-free diet plus Arg, VE, and MOS (AVM). Birds were orally challenged with 10(6) cfu of a novobiocyn and nalidixic acid-resistant Salmonella enterica serovar Typhimurium strain at d 7 (experiment 1) or at d 3 (experiment 2). Heterophil- (HOB) and monocyte- (MOB) oxidative burst and lymphocyte proliferation (LPR), antibody titers, and Salmonella content in the ceca were measured at several intervals postinfection (PI). In experiment 1, both AVM and AVE decreased HOB compared with the controls 5 and 9 d PI, but increased LPR 9 d PI. In the same experiment, birds fed the AVE diet had higher MOB than birds fed CTL+ or the AVM diet at 7 d PI, whereas 9 d PI birds fed the AVM diet had the highest MOB. In experiment 2, birds fed the AVE diet had higher MOB, HOB, and LPR than birds in the other treatments 7 and 14 d PI, except at 7 d PI, when MOB was not different among treatments. Birds fed the AVM diet had the highest IgA antibody titer, and a higher IgM antibody titer than the CTL+ birds. In experiment 1, Salmonella Typhimurium content in the ceca was lower in birds fed the AVM diet compared with birds fed the CTL- diet 3 d PI, but later on (10 and 17 d PI), and in experiment 2 (7, 14, and 21 d PI), Salmonella Typhimurium concentrations were not different among treatments. Thus, Arg and VE improved immune response after a Salmonella Typhimurium challenge in young chicks, and although they did not reduce Salmonella Typhimurium concentrations in the ceca, they may improve bacterial resistance against other pathogens in commercial growing conditions.
Collapse
Affiliation(s)
- X Liu
- Poultry Science Department, Texas A&M University, College Station 77843-2472
| | | | | | | |
Collapse
|
23
|
Ibuki M, Fukui K, Kanatani H, Mine Y. Anti-inflammatory effects of mannanase-hydrolyzed copra meal in a porcine model of colitis. J Vet Med Sci 2014; 76:645-51. [PMID: 24430661 PMCID: PMC4073332 DOI: 10.1292/jvms.13-0424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We evaluated the anti-inflammatory activity of mannanase-hydrolyzed copra meal (MNB),
including β-1,4-mannobiose (67.8%), in a dextran sodium sulfate (DSS)-induced porcine
model of intestinal inflammation. In the DSS-positive control (POS) and MNB treatment
(MCM) groups, DSS was first administered to piglets via intragastric catheter for 5 days,
followed by 5 days administration of saline or MCM. A negative control group (NEG)
received a saline alternative to DSS and MNB. Inflammation was assessed by clinical signs,
morphological and histological measurements, gut permeability and neutrophil infiltration.
Local production of TNF-α and IL-6 were analyzed by ELISA, colonic and ileal inflammatory
gene expressions were assessed by real time RT-PCR, and CD4+CD25+ cell populations were
analyzed by flow cytometry. Crypt elongation and muscle thickness, D-mannitol gut
permeation, colonic expression of the inflammatory mediators TNF-α and IL-6 and
myeloperoxidase activity were significantly lower in the MCM group than in that of POS
group. The mRNA levels of ileal IL-1β, IL-6, IL-17 and TNF-α were significantly lower
following MCM treatment than with POS treatment.MNB exerts anti-inflammatory activity
in vivo, suggesting that MNB is a novel therapeutic that may provide
relief to human and animals suffering from intestinal inflammation.
Collapse
Affiliation(s)
- Masahisa Ibuki
- R&D Institute, Fuji Oil Co., Ltd., Izumisano-shi, Osaka 598-8540, Japan
| | | | | | | |
Collapse
|
24
|
Babu US, Raybourne RB. Impact of dietary components on chicken immune system andSalmonellainfection. Expert Rev Anti Infect Ther 2014; 6:121-35. [DOI: 10.1586/14787210.6.1.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Jaito N, Saburi W, Muto H, Matsui H, Mori H. Colorimetric Quantification of β-(1→4)-Mannobiose and 4-O-β-D-Mannosyl-D-glucose. J Appl Glycosci (1999) 2014. [DOI: 10.5458/jag.jag.jag-2014_007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
26
|
Ibuki M, Fukui K, Yamauchi K. Effect of dietary mannanase-hydrolysed copra meal on growth performance and intestinal histology in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2013; 98:636-42. [PMID: 23859084 DOI: 10.1111/jpn.12105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 06/13/2013] [Indexed: 11/30/2022]
Abstract
We investigated mannanase-hydrolysed copra meal (MCM), which contains β-1,4-mannobiose (MNB), for its capacity to improve growth performance and activate intestinal villus function. Seven-day-old chicks were separated into four flocks with an equal mean body weight and then fed a basal diet (control) or a diet supplemented with 0.02% or 0.1% MCM. After 7 weeks, the feed intake and body weight were determined and then used to calculate the feed efficiency (FE). Moreover, the intestinal segments were examined by light microscopy and scanning electron microscopy (SEM) for cellular and morphological changes in the villus. Although feed intake was not significantly different among the experimental groups, the body weight gain and FE were significantly higher in the 0.1% MCM group than in the control group (p < 0.05), while feed intake tended to be higher in the 0.02% and 0.1% MCM groups. The cellular area of the ileum was significantly higher in the 0.02% and 0.1% groups in relation to that in the control group (p < 0.05). Furthermore, the cellular area of the duodenum and the jejunum tended to be higher in the 0.02% and 0.1% MCM groups. For the correlation analysis, a significant correlation was observed between the dosage of MCM and the cell area of the duodenum, jejunum and ileum. Moreover, the number of mitotic cells was higher in the 0.1% MCM group. As shown by SEM, the cells at the villi tips were protuberant in appearance in the 0.02% and 0.1% MCM treatments when compared with the relatively flat cells of the control. On the duodenal villus surface of the 0.1% MCM group, some cells devoid of microvilli were observed, suggesting that the increased protuberance of these cells represents increased absorption activity. Although intestinal villus height and area did not significantly differ among groups, the levels of these parameters tended to increase in the experimental groups relative to the control. The present morphological findings reveal that MNB might be effective for activating intestinal absorptive function, and that the functional activation promotes the growth of the chickens.
Collapse
Affiliation(s)
- M Ibuki
- R&D Institute, Fuji Oil, Ltd., Izumisano-Shi, Osaka, Japan
| | | | | |
Collapse
|
27
|
Yang C, Rupa P, Kanatani H, Nakamura A, Ibuki M, Mine Y. Therapeutic effects of β1, 4 mannobiose in a Balb/c mouse model of intranasally-induced pollen allergy. Allergol Int 2013; 62:65-76. [PMID: 23172359 DOI: 10.2332/allergolint.12-oa-0473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/04/2012] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Nutritional prebiotic supplementation represents an attractive approach for interventions of allergy. In this study, the potential therapeutic effect of β-1, 4 mannobiose (MNB) in a murine model of cedar pollinosis was investigated. METHODS Groups of Balb/c mice were intranasally sensitized to Japanese cedar pollen extract, and subsequently administered with low or high dose MNB. Both intraperitoneal and intranasal challenges were performed to monitor for clinical signs. Frequency of sneezing was recorded. Serum, spleen and Peyer's patches were collected for various biomarker analyses. Anti-allergic activity of MNB using RBL-2H3 cells was also evaluated. RESULTS Significant decrease in sneezing frequency, histamine, interleukin (IL)-4 and IL-17A and increase in TGF-β and IL-10 concentration were exhibited by the MNB-treated mice. However, Cry j1 and Cry j 2-specific IgE activity remained unaltered. The high dose MNB treatment increased total IgA activity and IL-10, TGF-β and FoxP3 and decreased IL-4, IL-17A, and RORγT mRNA expression. Inhibition of activation of RBL-2H3 cells was observed via decrease in histamine, intracellular Ca2+ concentration, and FcεRI mRNA expression. CONCLUSIONS We demonstrated the immunomodulatory effects of MNB and conclude that MNB is a potential therapeutic molecular nutritional supplement candidate for treatment of pollen allergy.
Collapse
Affiliation(s)
- Chengbo Yang
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Yang C, Rupa P, Kanatani H, Nakamura A, Ibuki M, Mine Y. Prophylaxis of intranasally induced pollen allergy in a BALB/C mouse model using a potential prebiotic β-1, 4 mannobiose. Allergol Int 2013; 62:53-64. [PMID: 23000729 DOI: 10.2332/allergolint.12-oa-0452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/31/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Dietary supplementation with unique prebiotic nondigestible carbohydrates has been shown to suppress allergy. In the present study, the prophylactic efficacy of a disaccharide β-1, 4 mannobiose (MNB) in a BALB/C mouse model of intranasally-induced pollen allergy was characterized. METHODS Balb/c mice were pretreated with MNB orally and sensitized with pollen extract intraperitoneally and intranasally and challenged with histamine and crude pollen extract. Outcomes were measured as clinical signs, antibody isotypes, cytokine gene and protein expression patterns. RESULTS The MNB-treated mice had lower sneezing frequency as compared to the positive control mice (P < 0.05). The low dose MNB-treated mice had less histamine (P < 0.05). However, the Cry j1 and Cry j 2-specific IgE, IgG, IgG1 and IgG2a antibody activity did not differ between groups (P > 0.05). The MNB-treated mice had increased IFN-γ (P < 0.05), and decreased IL-4 (P < 0.05). Mice in the high dose group had increased IL-10 (P < 0.05). However, TGF-β and IL-17 concentration did not differ between groups (P > 0.05). Both total and Cry j1 and Cry j 2-specific IgA were increased in the high dose group. Real-time RT-PCR analysis indicated that IL-4 and IL-17 mRNA expression were lower in MNB-treated mice (P < 0.05). CONCLUSIONS This work provides insights into using MNB as a potential prebiotic immunomodulator via decreased clinical signs, improved type1/type 2 balance, and IgA production, thus validating the potential use of MNB as a prophylactic prebiotic candidate to attenuate allergic response.
Collapse
Affiliation(s)
- Chengbo Yang
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Kovacs-Nolan J, Kanatani H, Nakamura A, Ibuki M, Mine Y. β-1,4-mannobiose stimulates innate immune responses and induces TLR4-dependent activation of mouse macrophages but reduces severity of inflammation during endotoxemia in mice. J Nutr 2013; 143:384-91. [PMID: 23343679 DOI: 10.3945/jn.112.167866] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
β-1,4-Mannobiose (MNB) has been shown to exert prebiotic activity and modulate mucosal gene expression. In this study, the immune-modulating effect of MNB in healthy and endotoxemic mice and its role in Toll-like receptor (TLR) 2/4-mediated macrophage activation were investigated. Mice were supplemented daily with MNB (0, 5, 10, or 25 mg/kg) for 14 d. To examine the effect of MNB during endotoxemia, mice were supplemented with or without MNB (25 mg/kg) for 14 d, followed by challenge with intraperitoneal LPS or saline. MNB induced expression of both T helper (Th) 1- and Th2-type cytokines in the ileum (P < 0.05) and increased fecal IgA production and splenic NK cell activity (P < 0.05) in healthy mice. In endotoxemic mice, MNB reduced the expression of Tnfa, Il-6, iNos (P < 0.05), and Il-10 (P < 0.05), and reduced LPS-induced weight loss but increased Ifng, Il-12p40, Il-5, and Ifna expression (P < 0.05) and NK cell activity relative to positive control (LPS) mice. Treatment of RAW 264.7 macrophages with MNB induced TNF-α and IL-6 secretion (P < 0.05), and this effect was abrogated by inhibiting TLR4, but not TLR2, signaling. Pretreatment of RAW 264.7 cells with MNB induced tolerance to TLR2 and TLR4 agonists, reducing TNF-α production (P < 0.05) upon secondary stimulation with LPS or lipoteichoic acid. These results indicate that MNB can modulate intestinal and systemic immune responses in healthy and endotoxemic mice and prevent LPS-induced immune suppression, as well as directly stimulating innate immune mechanisms in vitro as a TLR4 agonist.
Collapse
|
30
|
|
31
|
Low molecular weight fractions of BiMuno® exert immunostimulatory properties in murine macrophages. J Funct Foods 2012. [DOI: 10.1016/j.jff.2012.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Effects of fructooligosaccharide-inulin on Salmonella-killing and inflammatory gene expression in chicken macrophages. Vet Immunol Immunopathol 2012; 149:92-6. [PMID: 22627194 DOI: 10.1016/j.vetimm.2012.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/12/2012] [Accepted: 05/02/2012] [Indexed: 12/24/2022]
Abstract
Salmonella Enteritidis (SE) is one of the leading causes of food-borne salmonellosis, and macrophages play an essential role in eliminating this pathogen. Among the interventions to improve Salmonella clearance in chickens are the use of prebiotics and direct fed microbials (DFM) in animal feed as they have immunomodulatory effects. Therefore, we tested the influence of a prebiotic fructooligosaccharide (FOS)-inulin on the ability of the chicken macrophage HD11 cell line to phagocytose and kill SE, and express selected inflammatory cytokines and chemokines in an in vitro model. There were significantly fewer viable intracellular SE in HD11 cells treated with FOS-inulin than the untreated cells. However, SE phagocytosis, nitric oxide expression or production were not influenced by the prebiotic treatment. Among the inflammatory markers tested, IL-1β expression was significantly lower in HD11 cells treated with FOS-inulin. These results suggest that FOS-inulin has the ability to modulate the innate immune system as shown by the enhanced killing of SE and decreased inflammasome activation.
Collapse
|
33
|
Ibuki M, Kovacs-Nolan J, Fukui K, Kanatani H, Mine Y. β 1-4 mannobiose enhances Salmonella-killing activity and activates innate immune responses in chicken macrophages. Vet Immunol Immunopathol 2010; 139:289-95. [PMID: 21067819 DOI: 10.1016/j.vetimm.2010.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 09/28/2010] [Accepted: 10/05/2010] [Indexed: 11/25/2022]
Abstract
Salmonella spp. is one of the major causes of food-borne illness in humans, and Salmonella enteritidis (SE) infection in commercial poultry is a world-wide problem. Here we have investigated the in vitro immune-modulating effects of β 1-4 mannobiose (MNB), which was previously found to prevent SE infection in vivo in chickens, using chicken macrophage (MQ-MCSU) cells. Treatment of MQ-NCSU cells with MNB dose-dependently increased both phagocytic activity and Salmonella-killing activity of macrophages, with the highest reduction in SE viability observed at a concentration of 40 μg/ml at 48 h post-infection. Likewise, both hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) production were increased in a dose-dependent manner by MNB. Gene expression analysis of MNB-treated macrophages revealed significant increases in the expression of iNOS, NOX-1, IFN-γ, NRAMP1, and LITAF, genes critical for host defense and antimicrobial activity, when compared to untreated cells. This data confirms that MNB possesses potent innate immune-modulating activities and can up-regulate antibacterial defenses in chicken macrophages.
Collapse
Affiliation(s)
- Masahisa Ibuki
- R&D Institute, Fuji Oil, Ltd., 1 Sumiyoshi-Cho, Izumisano-Shi, Osaka 598-8540, Japan
| | | | | | | | | |
Collapse
|
34
|
Ibuki M, Kovacs-Nolan J, Fukui K, Kanatani H, Mine Y. Analysis of gut immune-modulating activity of β-1,4-mannobiose using microarray and real-time reverse transcription polymerase chain reaction. Poult Sci 2010; 89:1894-904. [DOI: 10.3382/ps.2010-00791] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
35
|
Searle LEJ, Cooley WA, Jones G, Nunez A, Crudgington B, Weyer U, Dugdale AH, Tzortzis G, Collins JW, Woodward MJ, La Ragione RM. Purified galactooligosaccharide, derived from a mixture produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar Typhimurium adhesion and invasion in vitro and in vivo. J Med Microbiol 2010; 59:1428-1439. [PMID: 20798214 DOI: 10.1099/jmm.0.022780-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prebiotic Bimuno(®) is a mixture containing galactooligosaccharides (GOSs), produced by the galactosyltransferase activity of Bifidobacterium bifidum NCIMB 41171 using lactose as the substrate. Previous in vivo and in vitro studies demonstrating the efficacy of Bimuno(®) in reducing Salmonella enterica serovar Typhimurium (S. Typhimurium) colonization did not ascertain whether or not the protective effects could be attributed to the prebiotic component GOS. Here we wished to test the hypothesis that GOS, derived from Bimuno(®), may confer the direct anti-invasive and protective effects of Bimuno(®). In this study the efficacy of Bimuno(®), a basal solution of Bimuno(®) without GOS [which contained glucose, galactose, lactose, maltodextrin and gum arabic in the same relative proportions (w/w) as they are found in Bimuno(®)] and purified GOS to reduce S. Typhimurium adhesion and invasion was assessed using a series of in vitro and in vivo models. The novel use of three dimensionally cultured HT-29-16E cells to study prebiotics in vitro demonstrated that the presence of ∼ 5 mg Bimuno(®) ml(-1) or ∼ 2.5 mg GOS ml(-1) significantly reduced the invasion of S. Typhimurium (SL1344nal(r)) (P<0.0001). Furthermore, ∼ 2.5 mg GOS ml(-1) significantly reduced the adherence of S. Typhimurium (SL1344nal(r)) (P<0.0001). It was demonstrated that cells produced using this system formed multi-layered aggregates of cells that displayed excellent formation of brush borders and tight junctions. In the murine ligated ileal gut loops, the presence of Bimuno(®) or GOS prevented the adherence or invasion of S. Typhimurium to enterocytes, and thus reduced its associated pathology. This protection appeared to correlate with significant reductions in the neutral and acidic mucins detected in goblet cells, possibly as a consequence of stimulating the cells to secrete the mucin into the lumen. In all assays, Bimuno(®) without GOS conferred no such protection, indicating that the basal solution confers no protective effects against S. Typhimurium. Collectively, the studies presented here clearly indicate that the protective effects conferred by Bimuno(®) can be attributed to GOS.
Collapse
Affiliation(s)
- Laura E J Searle
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - William A Cooley
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Gareth Jones
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alejandro Nunez
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Bentley Crudgington
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Ute Weyer
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alexandra H Dugdale
- Faculty of Veterinary Science, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - George Tzortzis
- Clasado Ltd, 5 Canon Harnett Court, Wolverton Mill, Milton Keynes MK12 5NF, UK
| | - James W Collins
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Flowers Building, Imperial College London, London SW7 2AZ, UK
| | - Martin J Woodward
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Roberto M La Ragione
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.,Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
36
|
Searle LEJ, Best A, Nunez A, Salguero FJ, Johnson L, Weyer U, Dugdale AH, Cooley WA, Carter B, Jones G, Tzortzis G, Woodward MJ, La Ragione RM. A mixture containing galactooligosaccharide, produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar Typhimurium infection in mice. J Med Microbiol 2009; 58:37-48. [PMID: 19074651 DOI: 10.1099/jmm.0.004390-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prebiotic Bimuno is a mixture containing galactooligosaccharide, produced by the galactosyltransferase activity of Bifidobacterium bifidum NCIMB 41171 in the presence of lactose. Previous studies have implicated prebiotics in reducing infections by enteric pathogens, thus it was hypothesized that Bimuno may confer some protection in the murine host from Salmonella enterica serovar Typhimurium (S. Typhimurium) infection. In this study, infection caused by S. Typhimurium SL1344nal(r) in the presence or absence of Bimuno was assessed using tissue culture assays, a murine ligated ileal gut loop model and a murine oral challenge model. In tissue culture adherence and invasion assays with HT-29-16E cells, the presence of approximately 2 mM Bimuno significantly reduced the invasion of S. Typhimurium SL1344nal(r) (P<0.0001). In the murine ligated ileal gut loops, the presence of Bimuno prevented colonization and the associated pathology of S. Typhimurium. In the BALB/c mouse model, the oral delivery of Bimuno prior to challenge with S. Typhimurium resulted in significant reductions in colonization in the five organs sampled, with highly significant reductions being observed in the spleen at 72 and 96 h post-challenge (P=0.0002, <0.0001, respectively). Collectively, the results indicate that Bimuno significantly reduced the colonization and pathology associated with S. Typhimurium infection in a murine model system, possibly by reducing the invasion of the pathogen into host cells.
Collapse
Affiliation(s)
- Laura E J Searle
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Angus Best
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alejandro Nunez
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Francisco J Salguero
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Linda Johnson
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Ute Weyer
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alexandra H Dugdale
- Faculty of Veterinary Science, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - William A Cooley
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Ben Carter
- South East Wales Trials Unit, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Gareth Jones
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - George Tzortzis
- Clasado Ltd, 5 Canon Harnett Court, Wolverton Mill, Milton Keynes MK12 5NF, UK
| | - Martin J Woodward
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Roberto M La Ragione
- Veterinary Laboratories Agency (VLA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|