1
|
He XN, Wu P, Jiang WD, Liu Y, Kuang SY, Tang L, Ren HM, Li H, Feng L, Zhou XQ. Aflatoxin B1 exposure induced developmental toxicity and inhibited muscle development in zebrafish embryos and larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163170. [PMID: 37003331 DOI: 10.1016/j.scitotenv.2023.163170] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/02/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
The prevalence of aflatoxin B1 (AFB1), one of the most toxic mycotoxins that contaminates feedstock and food is increasing worldwide. AFB1 can cause various health problems in humans and animals, as well as direct embryotoxicity. However, the direct toxicity of AFB1 on embryonic development, especially foetal foetus muscle development, has not been studied in depth. In the present study, we used zebrafish embryos as a model to study the mechanism of the direct toxicity of AFB1 to the foetus, including muscle development and developmental toxicity. Our results showed that AFB1 caused motor dysfunction in zebrafish embryos. In addition, AFB1 induces abnormalities in muscle tissue architecture, which in turn causes abnormal muscle development in larvae. Further studies found that AFB1 destroyed the antioxidant capacity and tight junction complexes (TJs), causing apoptosis in zebrafish larvae. In summary, AFB1 may induce developmental toxicity and inhibit muscle development through oxidative damage, apoptosis and disruption of TJs in zebrafish larvae. Our results revealed the direct toxicity effects of AFB1 on the development of embryos and larvae, including inhibition of muscle development and triggering neurotoxicity, induction of oxidative damage, apoptosis and disruption of TJs, and fills the gap in the toxicity mechanism of AFB1 on foetal development.
Collapse
Affiliation(s)
- Xiang-Ning He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China.
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China.
| |
Collapse
|
2
|
Atay E, Bozkurt E, Ertekin A. Effect of tramadol hydrochloride on neural tube development in 48‐hr chick embryos: Argyrophilic nucleolar organizing region and genetic analysis study. Birth Defects Res 2022. [DOI: 10.1002/bdr2.2137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Emre Atay
- Department of Anatomy, Faculty of Medicine Afyonkarahisar Health Sciences University Afyonkarahisar Turkey
| | - Erhan Bozkurt
- Department of Internal Medicine, Faculty of Medicine Afyonkarahisar Health Sciences University Afyonkarahisar Turkey
| | - Ayşe Ertekin
- Department of Emergency Medicine, Faculty of Medicine Afyonkarahisar Health Sciences University Afyonkarahisar Turkey
| |
Collapse
|
3
|
Modulatory Effects of Arctostaphylos uva-urs Extract In Ovo Injected into Broiler Embryos Contaminated by Aflatoxin B1. Animals (Basel) 2022; 12:ani12162042. [PMID: 36009632 PMCID: PMC9404454 DOI: 10.3390/ani12162042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
In ovo injection of nutrients can modulate the embryo’s physiological responses against aflatoxin B1 (AFB1) embryotoxicity. This hypothesis was tested using in ovo injection of Arctostaphylos uva-ursi (Ar. uu.) methanolic extract. The total polyphenols, total flavonoids, total antioxidant capacity, and GC-MS analysis were all assessed in the Ar. uu. methanolic extract. A total of 180 ten-day-old embryonated eggs were distributed into six groups of 30 replicates each. The first group was used as a control (non-injected), and the second, third, fourth, fifth, and sixth groups were injected with 10 µ double-distilled water (DDW), 500 µL methanol, 0.01 g Ar. uu./500 µL methanol, 50 ng AFB1/10 µL DDW, and 50 ng AFB1 in 10 µ DDW + 0.01 g Ar. uu./500 µL methanol, respectively. The relative embryo weight, residual yolk sac weight, tibia length and weight, and survival were recorded. Total and differential leukocytes, oxidative stress, and humoral immune responses were observed. The residual yolk sac was lower (p < 0.05) in the Ar. uu. group than other groups. The embryonic growth (tibia weight and length) was enhanced in AFB1 + Ar. uu.-injected embryos compared with those injected with AFB1 alone. In conclusion, in ovo injection of Arctostaphylos uva-ursi could modulate AFB1-induced toxicity in chicken embryos.
Collapse
|
4
|
Gacem MA, Abd-Elsalam KA. Nanomaterials for the Reduction of Mycotoxins in Cereals. CEREAL DISEASES: NANOBIOTECHNOLOGICAL APPROACHES FOR DIAGNOSIS AND MANAGEMENT 2022:371-406. [DOI: 10.1007/978-981-19-3120-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Dietary aflatoxin impairs flesh quality through reducing nutritional value and changing myofiber characteristics in yellow catfish (Pelteobagrus fulvidraco). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Elwan H, Xie C, Miao LP, Dong X, Zou XT, Mohany M, Ahmed MM, Al-Rejaie SS, Elnesr SS. Methionine alleviates aflatoxinb1-induced broiler chicks embryotoxicity through inhibition of caspase-dependent apoptosis and enhancement of cellular antioxidant status. Poult Sci 2021; 100:101103. [PMID: 34229218 PMCID: PMC8261005 DOI: 10.1016/j.psj.2021.101103] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022] Open
Abstract
Practical methods for preventing embryotoxicity in chickens that are caused by aflatoxin-B1 (AFB1) are currently rare. Binding absorbers are commonly used in feeding stuff to reduce laying hens' exposure to off-contaminated diets, thus reducing residue exposure to fertilized eggs. Nonetheless, several adsorbents have been shown to affect the use of nutrients and the absorption of minerals in poultry. Thus, seeking an effective strategy to counter or control embryotoxicity in broiler chicks caused by AFB1 is a problem. A total of 180 embryonated eggs were injected with 36 ng AFB1 with or without 5.90 mg L-methionine (Met) 30 embryonated eggs each, followed by incubation in an incubator until hatching time. The in ovo injection of Met significantly reduced toxicity caused by AFB1 in broiler embryos by enhancing the liver and kidney functions, lipid profiles, and alleviated oxidative stress during the incubation period. Furthermore, the relative gene expressions (SSTR5, TSH-β, Bcl-2, GSH-Px, GST-a, and SOD in the liver) were up-regulated with in ovo injection of AFB1+Met compared to AFB1 alone. Moreover, there was a dowin-regulated trend in Bax, Caspases-3, Caspases-7, Caspases-9, CYP1A1, CYP2H1, and P53 gene expression with in ovo injection of AFB1+Met compared to AFB1 alone. The in ovo injection of Met led to less apoptotic cells in liver tissues. Such results might be necessary for the poultry industry as it is focused on managing the embryotoxicity of AFB1, which affecting poultry production and welfare. Results from this study demonstrated that in ovo Met injection could alleviate AF-induced toxicity in chicken embryos.
Collapse
Affiliation(s)
- Hamada Elwan
- College of Animal Science, Zhejiang University, Hangzhou, China; Animal and Poultry Production Department, Faculty of Agriculture, Minia University, El-Minya, 61519, Egypt
| | - Chao Xie
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - L P Miao
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xinyang Dong
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiao-Ting Zou
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Mohammed M Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - S S Elnesr
- College of Animal Science, Zhejiang University, Hangzhou, China; Department of Poultry Production, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt
| |
Collapse
|
7
|
Zanu HK, Kheravii SK, Bedford MR, Swick RA. Dietary calcium and meat and bone meal as potential precursors for the onset of necrotic enteritis. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1831419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- H. K. Zanu
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - S. K. Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | | | - R. A. Swick
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| |
Collapse
|
8
|
Fouad AM, Ruan D, El-Senousey HK, Chen W, Jiang S, Zheng C. Harmful Effects and Control Strategies of Aflatoxin B₁ Produced by Aspergillus flavus and Aspergillus parasiticus Strains on Poultry: Review. Toxins (Basel) 2019; 11:E176. [PMID: 30909549 PMCID: PMC6468546 DOI: 10.3390/toxins11030176] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
The presence of aflatoxin B₁ (AFB₁) in poultry diets decreases the hatchability, hatchling weight, growth rate, meat and egg production, meat and egg quality, vaccination efficiency, as well as impairing the feed conversion ratio and increasing the susceptibility of birds to disease and mortality. AFB₁ is transferred from poultry feed to eggs, meat, and other edible parts, representing a threat to the health of consumers because AFB₁ is carcinogenic and implicated in human liver cancer. This review considers how AFB₁ produced by Aspergillus flavus and Aspergillus parasiticus strains can affect the immune system, antioxidant defense system, digestive system, and reproductive system in poultry, as well as its effects on productivity and reproductive performance. Nutritional factors can offset the effects of AFB₁ in poultry and, thus, it is necessary to identify and select suitable additives to address the problems caused by AFB₁ in poultry.
Collapse
Affiliation(s)
- Ahmed Mohamed Fouad
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Dong Ruan
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - HebatAllah Kasem El-Senousey
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Wei Chen
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Shouqun Jiang
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chuntian Zheng
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
9
|
Lu Y, Zhang Y, Liu JQ, Zou P, Jia L, Su YT, Sun YR, Sun SC. Comparison of the toxic effects of different mycotoxins on porcine and mouse oocyte meiosis. PeerJ 2018; 6:e5111. [PMID: 29942714 PMCID: PMC6015490 DOI: 10.7717/peerj.5111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/06/2018] [Indexed: 11/30/2022] Open
Abstract
Background Aflatoxin B1 (AFB1), deoxynivalenol (DON), HT-2, ochratoxin A (OTA), zearalenone (ZEA) are the most common mycotoxins that are found in corn-based animal feed which have multiple toxic effects on animals and humans. Previous studies reported that these mycotoxins impaired mammalian oocyte quality. However, the effective concentrations of mycotoxins to animal oocytes were different. Methods In this study we aimed to compare the sensitivity of mouse and porcine oocytes to AFB1, DON, HT-2, OTA, and ZEA for mycotoxin research. We adopted the polar body extrusion rate of mouse and porcine oocyte as the standard for the effects of mycotoxins on oocyte maturation. Results and Discussion Our results showed that 10 μM AFB1 and 1 μM DON significantly affected porcine oocyte maturation compared with 50 μM AFB1 and 2 μM DON on mouse oocytes. However, 10 nM HT-2 significantly affected mouse oocyte maturation compared with 50 nM HT-2 on porcine oocytes. Moreover, 5 μM OTA and 10 μM ZEA significantly affected porcine oocyte maturation compared with 300 μM OTA and 50 μM ZEA on mouse oocytes. In summary, our results showed that porcine oocytes were more sensitive to AFB1, DON, OTA, and ZEA than mouse oocytes except HT-2 toxin.
Collapse
Affiliation(s)
- Yujie Lu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Liu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Peng Zou
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Lu Jia
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | | | - Yu-Rong Sun
- Jiangsu Aomai Bio-Tech Company, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Gülbahçe Mutlu E, Arslan E, Öznurlu Y, Özparlak H. The effects of aflatoxin B 1 on growth hormone regulated gene-1 and interaction between DNA and aflatoxin B 1 in broiler chickens during hatching. Biotech Histochem 2018; 93:463-470. [PMID: 29693452 DOI: 10.1080/10520295.2018.1454986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Many types of aflatoxin cause problems for both public and animal health. Aflatoxin B1 (AFB1) is the most toxic and commonly encountered fungal toxin that appears in poultry feed and in feeds stored under unsuitable conditions. AFB1 decreases feed quality, egg production and fertility of hatching eggs. Also, AFB1 alters the development of embryos by infecting eggs. We investigated using sequence analysis the changes caused by different concentrations of AFB1 on the promoter sequences of the growth hormone regulated gene-1 (GHRG-1) in chick embryo at 13, 17, 19 and 21 days incubation. DNA isolated from the liver of chick embryos treated with different concentrations of AFB1 was separated using agarose gel electrophoresis to detect apoptosis, and DNA interaction with AFB1 was investigated using plasmids to detect changes in electrophoretic mobility and their effects on DNA. Base changes of the promoter sequences of GHRG-1 in 5 ng/egg, 15 ng/egg and 40 ng/egg doses of AFB1 were increased on day 19 compared to base changes of the same AFB1 doses on day 13. We also found that AFB at different concentrations changed the mobility of DNA by binding to it, and that high doses of AFB1 destroyed DNA. The DNA interaction study using plasmid demonstrated that AFB1 at high doses was bound to plasmid DNA, slowed its mobility and inhibited restriction cuts.
Collapse
Affiliation(s)
- E Gülbahçe Mutlu
- a Department of Physiology, Faculty of Medicine , KTO Karatay University , Karatay
| | - E Arslan
- b Department of Biology, Faculty of Science , Selçuk University , Selçuklu , Konya , Turkey
| | - Y Öznurlu
- c Department of Histology-Embryology, Faculty of Veterinary , Selçuk University , Selçuklu , Konya , Turkey
| | - H Özparlak
- b Department of Biology, Faculty of Science , Selçuk University , Selçuklu , Konya , Turkey
| |
Collapse
|
11
|
Nishimwe K, Wanjuki I, Karangwa C, Darnell R, Harvey J. An initial characterization of aflatoxin B1 contamination of maize sold in the principal retail markets of Kigali, Rwanda. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|