1
|
Zhang T, Ning Z, Chen Y, Wen J, Jia Y, Wang L, Lv X, Yang W, Qu C, Li H, Wang H, Qu L. Understanding Transcriptomic and Serological Differences between Forced Molting and Natural Molting in Laying Hens. Genes (Basel) 2021; 13:genes13010089. [PMID: 35052428 PMCID: PMC8774386 DOI: 10.3390/genes13010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 01/19/2023] Open
Abstract
Molting is natural adaptation to climate change in all birds, including chickens. Forced molting (FM) can rejuvenate and reactivate the reproductive potential of aged hens, but the effect of natural molting (NM) on older chickens is not clear. To explore why FM has a dramatically different effect on chickens compared with NM, the transcriptome analyses of the hypothalamus and ovary in forced molted and natural molted hens at two periods with feathers fallen and regrown were performed. Additionally, each experimental chicken was tested for serological indices. The results of serological indices showed that growth hormone, thyroid stimulating hormone, and thyroxine levels were significantly higher (p < 0.05) in forced molted hens than in natural molted hens, and calcitonin concentrations were lower in the forced molted than in the natural molted hens. Furthermore, the transcriptomic analysis revealed a large number of genes related to disease resistance and anti-aging in the two different FM and NM periods. These regulatory genes and serological indices promote reproductive function during FM. This study systematically revealed the transcriptomic and serological differences between FM and NM, which could broaden our understanding of aging, rejuvenation, egg production, and welfare issues related to FM in chickens.
Collapse
Affiliation(s)
- Tongyu Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
| | - Yu Chen
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Junhui Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Liang Wang
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Xueze Lv
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Weifang Yang
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Changqing Qu
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang 236037, China;
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Huie Wang
- College of Animal Science, Tarim University, Alar 843300, China;
| | - Lujiang Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
- Correspondence:
| |
Collapse
|
2
|
Transcriptomic Analysis of Laying Hens Revealed the Role of Aging-Related Genes during Forced Molting. Genes (Basel) 2021; 12:genes12111767. [PMID: 34828373 PMCID: PMC8621152 DOI: 10.3390/genes12111767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 12/03/2022] Open
Abstract
Molting in birds provides us with an ideal genetic model for understanding aging and rejuvenation since birds present younger characteristics for reproduction and appearance after molting. Forced molting (FM) by fasting in chickens causes aging of their reproductive system and then promotes cell redevelopment by providing water and feed again. To reveal the genetic mechanism of rejuvenation, we detected blood hormone indexes and gene expression levels in the hypothalamus and ovary of hens from five different periods during FM. Three hormones were identified as participating in FM. Furthermore, the variation trends of gene expression levels in the hypothalamus and ovary at five different stages were found to be basically similar using transcriptome analysis. Among them, 45 genes were found to regulate cell aging during fasting stress and 12 genes were found to promote cell development during the recovery period in the hypothalamus. In addition, five hub genes (INO80D, HELZ, AGO4, ROCK2, and RFX7) were identified by WGCNA. FM can restart the reproductive function of aged hens by regulating expression levels of genes associated with aging and development. Our study not only enriches the theoretical basis of FM but also provides insights for the study of antiaging in humans and the conception mechanism in elderly women.
Collapse
|
3
|
Molting method alternative and detection of estrogen receptors by immunohistochemical methods on molted layers. Trop Anim Health Prod 2021; 53:96. [PMID: 33415523 DOI: 10.1007/s11250-020-02509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Three experiments were designed to evaluate the effects of different molting methods on the growth performance, detection of estrogen receptors (ERs), and immunohistochemical properties of some tissues in pre-, during, and post-molting of layers. In experiment 1, 302 Hy-line W-36 were reared from 75 to 76 weeks. In experiment 2, a total of 252 Hy-line W-36 were randomly allocated to 7 groups, with 6 replications and 6 birds in each. Hens fed in the E and D groups reached 30% of loss weight sooner (P < 0.05). Egg production was also sooner stopped in the FW group than in other ones (P < 0.05). In experiment 3, after inducing molting, each group in experiment 2 was divided into 2 groups with and without Humulus lupulus (Hop). The E group feed intake was increased, as compared to groups F and C (P < 0.05). A significant increase in egg weight was found by applying Hop and molting methods (P < 0.05). Days for return to the initial egg production and 10% egg laying were significantly decreased in the birds fed by Hop in the E and D groups (P < 0.05). The W-D, N-D, W-E, and N-E groups sooner returned to 50% egg laying, in comparison to other treatments (P < 0.05). Plasma estrogen and ERs were decreased by the molting programs, as compared with pre-molting; however, Hop increased their post-molting. After the molting period, egg production and ERs were increased significantly, as compared with the pre-molting period. To conclude, the white button mushroom residual, through decreasing ERs, could be used successfully for forced molting, and Hop could lead to a good performance by increasing ERs in the second laying cycle.
Collapse
|