1
|
Behera A, Reddy ABM. WWP1 E3 ligase at the crossroads of health and disease. Cell Death Dis 2023; 14:853. [PMID: 38129384 PMCID: PMC10739765 DOI: 10.1038/s41419-023-06380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The E3 ubiquitin ligase WWP1 (WW Domain-containing E3 Ubiquitin Protein Ligase 1) is a member of the HECT (Homologous to the E6-associated protein Carboxyl Terminus) E3 ligase family. It is conserved across several species and plays crucial roles in various physiological processes, including development, cell growth and proliferation, apoptosis, and differentiation. It exerts its functions through ubiquitination or protein-protein interaction with PPXY-containing proteins. WWP1 plays a role in several human diseases, including cardiac conditions, neurodevelopmental, age-associated osteogenic disorders, infectious diseases, and cancers. In solid tumors, WWP1 plays a dual role as both an oncogene and a tumor suppressor, whereas in hematological malignancies such as AML, it is identified as a dedicated oncogene. Importantly, WWP1 inhibition using small molecule inhibitors such as Indole-3-Carbinol (I3C) and Bortezomib or siRNAs leads to significant suppression of cancer growth and healing of bone fractures, suggesting that WWP1 might serve as a potential therapeutic target for several diseases. In this review, we discuss the evolutionary perspective, structure, and functions of WWP1 and its multilevel regulation by various regulators. We also examine its emerging roles in cancer progression and its therapeutic potential. Finally, we highlight WWP1's role in normal physiology, contribution to pathological conditions, and therapeutic potential for cancer and other diseases.
Collapse
Affiliation(s)
- Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | |
Collapse
|
2
|
Greene E, Flees J, Dadgar S, Mallmann B, Orlowski S, Dhamad A, Rochell S, Kidd M, Laurendon C, Whitfield H, Brearley C, Rajaram N, Walk C, Dridi S. Quantum Blue Reduces the Severity of Woody Breast Myopathy via Modulation of Oxygen Homeostasis-Related Genes in Broiler Chickens. Front Physiol 2019; 10:1251. [PMID: 31632293 PMCID: PMC6781743 DOI: 10.3389/fphys.2019.01251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
The incidence of woody breast (WB) is increasing on a global scale representing a significant welfare problem and economic burden to the poultry industry and for which there is no effective treatment due to its unknown etiology. In this study, using diffuse reflectance spectroscopy (DRS) coupled with iSTAT portable clinical analyzer, we provide evidence that the circulatory- and breast muscle-oxygen homeostasis is dysregulated [low oxygen and hemoglobin (HB) levels] in chickens with WB myopathy compared to healthy counterparts. Molecular analysis showed that blood HB subunit Mu (HBM), Zeta (HBZ), and hephaestin (HEPH) expression were significantly down regulated; however, the expression of the subunit rho of HB beta (HBBR) was upregulated in chicken with WB compared to healthy counterparts. The breast muscle HBBR, HBE, HBZ, and hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) mRNA abundances were significantly down regulated in WB-affected compared to normal birds. The expression of HIF-1α at mRNA and protein levels was significantly induced in breasts of WB-affected compared to unaffected birds confirming a local hypoxic status. The phosphorylated levels of the upstream mediators AKT at Ser473 site, mTOR at Ser2481 site, and PI3K P85 at Tyr458 site, as well as their mRNA levels were significantly increased in breasts of WB-affected birds. In attempt to identify a nutritional strategy to reduce WB incidence, male broiler chicks (Cobb 500, n = 576) were randomly distributed into 48 floor pens and subjected to six treatments (12 birds/pen; 8 pens/treatment): a nutrient adequate control group (PC), the PC supplemented with 0.3% myo-inositol (PC + MI), a negative control (NC) deficient in available P and Ca by 0.15 and 0.16%, respectively, the NC fed with quantum blue (QB) at 500 (NC + 500 FTU), 1,000 (NC + 1,000 FTU), or 2,000 FTU/kg of feed (NC + 2,000 FTU). Although QB-enriched diets did not affect growth performances (FCR and FE), it did reduce the severity of WB by 5% compared to the PC diet. This effect is mediated by reversing the expression profile of oxygen homeostasis-related genes; i.e., significant down regulation of HBBR and upregulation of HBM, HBZ, and HEPH in blood, as well as a significant upregulation of HBA1, HBBR, HBE, HBZ, and PHD2 in breast muscle compared to the positive control.
Collapse
Affiliation(s)
- Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Joshua Flees
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sina Dadgar
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Barbara Mallmann
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara Orlowski
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Ahmed Dhamad
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Samuel Rochell
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Caroline Laurendon
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Hayley Whitfield
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Charles Brearley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | | | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|