Nowack B. Environmental chemistry of aminopolycarboxylate chelating agents.
ENVIRONMENTAL SCIENCE & TECHNOLOGY 2002;
36:4009-16. [PMID:
12380068 DOI:
10.1021/es025683s]
[Citation(s) in RCA: 262] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Aminopolycarboxylate chelating agents are under scrutiny due to their influence on metal availability and mobility and in particular due to their persistence in the environment. In this review chelate adsorption, metal-mobilization, metal-exchange, mineral dissolution, reactive transport, photodegradation, and chemical degradation are all shown to be substantially affected by the chelated metal ion. The different reactivities of the metal-complexes have to be considered when assessing the reactions of chelating agents in the environment because they occur in natural waters predominantly in the form of metal complexes. Knowing the speciation of chelating agents in natural waters is therefore crucial for predicting their environmental fate. Despite this importance, only a few speciation measurements have been reported for natural waters, and model calculations have been frequently used instead. These calculations are, however, complicated by slow metal-exchange reactions that result in a nonequilibrium speciation and by the presence of naturally occurring ligands that compete with the chelating agents for available metals. The basis for a refined risk assessment of aminocarboxylate chelates should be the actual speciation in the natural water directly determined by analytical methods. The discussion of the influence of chelates on metal availability and fate also has to include the potential presence of other aminopolycarboxylate chelating agents besides the well-known EDTA and NTA.
Collapse