1
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 3: Heat and cold tolerance during exercise. Eur J Appl Physiol 2024; 124:1-145. [PMID: 37796292 DOI: 10.1007/s00421-023-05276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
In this third installment of our four-part historical series, we evaluate contributions that shaped our understanding of heat and cold stress during occupational and athletic pursuits. Our first topic concerns how we tolerate, and sometimes fail to tolerate, exercise-heat stress. By 1900, physical activity with clothing- and climate-induced evaporative impediments led to an extraordinarily high incidence of heat stroke within the military. Fortunately, deep-body temperatures > 40 °C were not always fatal. Thirty years later, water immersion and patient treatments mimicking sweat evaporation were found to be effective, with the adage of cool first, transport later being adopted. We gradually acquired an understanding of thermoeffector function during heat storage, and learned about challenges to other regulatory mechanisms. In our second topic, we explore cold tolerance and intolerance. By the 1930s, hypothermia was known to reduce cutaneous circulation, particularly at the extremities, conserving body heat. Cold-induced vasodilatation hindered heat conservation, but it was protective. Increased metabolic heat production followed, driven by shivering and non-shivering thermogenesis, even during exercise and work. Physical endurance and shivering could both be compromised by hypoglycaemia. Later, treatments for hypothermia and cold injuries were refined, and the thermal after-drop was explained. In our final topic, we critique the numerous indices developed in attempts to numerically rate hot and cold stresses. The criteria for an effective thermal stress index were established by the 1930s. However, few indices satisfied those requirements, either then or now, and the surviving indices, including the unvalidated Wet-Bulb Globe-Thermometer index, do not fully predict thermal strain.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Alhammoud M, Oksa J, Morel B, Hansen C, Chastan D, Racinais S. Thermoregulation and shivering responses in elite alpine skiers. Eur J Sport Sci 2020; 21:400-411. [DOI: 10.1080/17461391.2020.1754470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Marine Alhammoud
- French Ski Federation, Annecy, France
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar
| | - Juha Oksa
- Workability and working Careers, Finnish Institute of Occupational Health, Oulu, Finland
| | - Baptiste Morel
- Inter-University Laboratory of Human Movement Biology (EA 7424), Savoie Mont-Blanc University, Chambéry, France
| | - Clint Hansen
- Department of Neurology, Christian-Albrechts-Universitat zu Kiel Medizinische Fakultat, Kiel, Germany
| | | | - Sebastien Racinais
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar
- Laboratory Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris, France
| |
Collapse
|
3
|
Abstract
International travel is a frequent occurrence in the life of the elite athlete; such travel can pose challenges to the sport medicine practitioner. Travel is also the reality of many recreational level or sub-elite athletes as opportunities for international competition and training proliferate. An appreciation of the range of responsibilities associated with the preparation for and the strategies to facilitate such travel is essential for any physician charged with the care of athletes and teams. An appreciation of (1) the medical and public health challenges associated with competition in a particular setting; (2) the requirements for vaccination and immunization; (3) the strategies for the management of jet lag and climatic or environmental extremes; (4) the range of supplies and equipment necessary for travel to certain locales; (5) the need to ensure the availability of ample familiar and nutritious foods; (6) the potential need for specialty care in strange settings; (7) the management of common travel-associated illness; and (8) the challenges associated with the evacuation of an injured athlete are fundamental to the successful management of international travel involving athletes and teams. The adoption of a methodical approach to pre-trip planning can ensure an enhanced travel experience, illness-free training and competition, and facilitate optimal performance.
Collapse
|
4
|
|
5
|
Ducharme MB, Lounsbury DS. Self-rescue swimming in cold water: the latest advice. Appl Physiol Nutr Metab 2007; 32:799-807. [PMID: 17622298 DOI: 10.1139/h07-042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
According to the 2006 Canadian Red Cross Drowning Report, 2007 persons died of cold-water immersion in Canada between 1991 and 2000. These statistics indicate that prevention of cold-water immersion fatalities is a significant public health issue for Canadians. What should a person do after accidental immersion in cold water? For a long time, aquatic safety organizations and government agencies stated that swimming should not be attempted, even when a personal flotation device (PFD) is worn. The objective of the present paper is to present the recent scientific evidence making swimming a viable option for self-rescue during accidental cold-water immersion. Early studies in the 1960s and 1970s led to a general conclusion that "people are better off if they float still in lifejackets or hang on to wreckage and do not swim about to try to keep warm". Recent evidence from the literature shows that the initial factors identified as being responsible for swimming failure can be either easily overcome or are not likely the primary contributors to swimming failure. Studies over the last decade reported that swimming failure might primarily be related not to general hypothermia, but rather to muscle fatigue of the arms as a consequence of arm cooling. This is based on the general observation that swimming failure developed earlier than did systemic hypothermia, and can be related to low temperature of the arm muscles following swimming in cold water. All of the above studies conducted in water between 10 and 14 degrees C indicate that people can swim in cold water for a distance ranging between about 800 and 1500 m before being incapacitated by the cold. The average swimming duration for the studies was about 47 min before incapacitation, regardless of the swimming ability of the subjects. Recent evidence shows that people have a very accurate idea about how long it will take them to achieve a given swimming goal despite a 3-fold overestimation of the absolute distance to swim. The subjects were quite astute at deciding their swimming strategy early in the immersion with 86% success, but after about 30 min of swimming or passive cooling, their decision-making ability became impaired. It would therefore seem wise to make one's accidental immersion survival plan early during the immersion, directly after cessation of the cold shock responses. Additional recommendations for self-rescue are provided based on recent scientific evidence.
Collapse
Affiliation(s)
- Michel B Ducharme
- Human Protection and Performance, Defence R&D Canada - Toronto, 1133 Sheppard Ave. W., Toronto, ON M3M 3B9, Canada.
| | | |
Collapse
|
6
|
Hawkins MN, Raven PB, Snell PG, Stray-Gundersen J, Levine BD. American College of Sports Medicine position stand: prevention of cold injuries during exercise. Med Sci Sports Exerc 2007; 39:103-7. [PMID: 17218891 DOI: 10.1249/01.mss.0000241641.75101.64] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is the position of the American College of Sports Medicine that exercise can be performed safely in most cold-weather environments without incurring cold-weather injuries. The key to prevention is use of a comprehensive risk management strategy that: a) identifies/assesses the cold hazard; b) identifies/assesses contributing factors for cold-weather injuries; c) develops controls to mitigate cold stress/strain; d) implements controls into formal plans; and e) utilizes administrative oversight to ensure controls are enforced or modified. The American College of Sports Medicine recommends that: 1) coaches/athletes/medical personnel know the signs/symptoms and risk factors for hypothermia, frostbite, and non-freezing cold injuries, identify individuals susceptible to cold injuries, and have the latest up-to-date information about current and future weather conditions before conducting training sessions or competitions; 2) cold-weather clothing be chosen based on each individual's requirements and that standardized clothing ensembles not be mandated for entire groups; 3) the wind-chill temperature index be used to estimate the relative risk of frostbite and that heightened surveillance of exercisers be used at wind-chill temperatures below -27 degrees C (-18 degrees F); and 4) individuals with asthma and cardiovascular disease can exercise in cold environments, but should be monitored closely.
Collapse
Affiliation(s)
- Megan N Hawkins
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, 7232 Greenville Avenue, Dallas, TX 75231, USA
| | | | | | | | | |
Collapse
|
7
|
Ainslie PN, Campbell IT, Lambert JP, MacLaren DPM, Reilly T. Physiological and Metabolic Aspects of Very Prolonged Exercise with Particular Reference to Hill Walking. Sports Med 2005; 35:619-47. [PMID: 16026174 DOI: 10.2165/00007256-200535070-00006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hill walking is a popular recreational activity in the developed world, yet it has the potential to impose severe stress simultaneously upon several regulatory systems. Information regarding the physiological strain imposed by prolonged walking outdoors in adverse climatic conditions was reported almost four decades ago and recent research has extended some of this work. These data indicate that once the walker fatigues and starts to slow or stops walking altogether, the rate of heat production falls dramatically. This decrease alone predisposes to the development of hypothermia. These processes, in adverse weather conditions and/or during periods when the level of exertion is low (with low heat production), will be accelerated. Since the majority of walkers pursue this activity in groups, the less fit walkers may be more susceptible to fatigue when exercising at a higher relative intensity compared with their fitter counterparts. The best physiological offset for hypothermia is to maintain heat production by means of exercise, and so fatigue becomes a critical predisposing factor; it is as important to facilitate heat loss, especially during periods of high exertion, as it is to maintain heat production and preserve insulation. This can be partly achieved by clothing adjustments and consideration of the intensity of exercise. Failure to provide adequate energy intake during hill walking activities has been associated with decreased performance (particularly with respect to balance) and impaired thermoregulation. Such impairments may increase susceptibly to both fatigue and injury whilst pursuing this form of activity outdoors. The prolonged low to moderate intensity of activity experienced during a typical hill walk elicits marked changes in the metabolic and hormonal milieu. Available data suggest that during hill walking, even during periods of acute negative energy balance, blood glucose concentrations are maintained. The maintenance of blood glucose concentrations seems to reflect the presence of an alternative fuel source, a hormonally induced increase in fat mobilisation. Such enhancement of fat mobilisation should make it easier to maintain blood glucose by decreasing carbohydrate oxidation and promoting gluconeogenesis, thus sparing glucose utilisation by active muscle. During strenuous hill walking, older age walkers may be particularly prone to dehydration and decreased physical and mental performance, when compared with their younger counterparts. In summary, high rates of energy expenditure and hypohydration are likely to be closely linked to the activity. Periods of adverse weather, low energy intake, lowered fitness or increased age, can all increase the participants' susceptibility to injury, fatigue and hypothermia in the mountainous environment.
Collapse
Affiliation(s)
- Philip N Ainslie
- Department of Physiology and Biophysics, University of Calgary, Faculty of Medicine, Calgary, Canada.
| | | | | | | | | |
Collapse
|
8
|
Ainslie PN, Campbell IT, Frayn KN, Humphreys SM, MacLaren DPM, Reilly T, Westerterp KR. Energy balance, metabolism, hydration, and performance during strenuous hill walking: the effect of age. J Appl Physiol (1985) 2002; 93:714-23. [PMID: 12133883 DOI: 10.1152/japplphysiol.01249.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We aimed to examine the effect of age on energy balance, metabolism, hydration, and performance during 10 days of strenuous hill walking. Seventeen male subjects were divided into two groups according to their age. The nine subjects in group 1 constituted the younger group (age 24 +/- 3 yr), whereas eight older subjects were in group 2 (age 56 +/- 3 yr). Both groups completed 10 consecutive days of high-intensity hill walking. Mean (range) daily walking distances and ascent were 21 km (10-35 km) and 1,160 m (800-2,540 m), respectively. Energy intake was calculated from weighed food intake, and energy expenditure was measured by the doubly labeled water method. Blood and urine were sampled on alternative days to determine any changes in metabolism and hydration during the 10 days. Subjects also completed a battery of tests that included muscular strength (handgrip), jump performance, cognitive processing time, and flexibility. The younger group remained hydrated, whereas the older group became progressively dehydrated, indicated by a near twofold increase in urine osmolality concentration on day 11. This increased urine osmolality in the older group was highly correlated with impairment in vertical-jump performance (r = -0.86; P < 0.05) and decreased cognitive processing time (r = 0.79; P < 0.05). Despite energy expenditure of approximately 21 MJ/day, body mass was well maintained in both groups. Both groups displayed a marked increase in fat mobilization, reflected in significantly lowered prewalk insulin concentrations and elevated postwalk glycerol and nonesterified fatty acid concentrations. Despite the dehydration and impaired performance in the older group, blood glucose concentrations were well maintained in both groups, probably mediated via the increased mobilization of fat.
Collapse
Affiliation(s)
- P N Ainslie
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 2ET, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
9
|
Ainslie PN, Campbell IT, Frayn KN, Humphreys SM, Maclaren DPM, Reilly T. Physiological and metabolic responses to a hill walk. J Appl Physiol (1985) 2002; 92:179-87. [PMID: 11744658 DOI: 10.1152/jappl.2002.92.1.179] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The physiological and metabolic demands of hill walking have not been studied systematically in the field despite the potentially deleterious physiological consequences of activity sustained over an entire day. On separate occasions, 13 subjects completed a self-paced hill walk over 12 km, consisting of a range of gradients and terrain typical of a mountainous walk. During the hill walk, continuous measurements of rectal (T(re)) and skin (T(sk)) temperatures and of respiratory gas exchange were made to calculate the total energy expenditure. Blood samples, for the analysis of metabolites and hormones, were taken before breakfast and lunch and immediately after the hill walk. During the first 5 km of the walk (100- to 902-m elevation), T(re) increased (36.9 +/- 0.2 to 38.5 +/- 0.4 degrees C) with a subsequent decrease in mean T(sk) from this time point. T(re) decreased by approximately 1.0 degrees C during a 30-min stop for lunch, and it continued to decrease a further 0.5 degrees C after walking recommenced. The total energy intake from both breakfast and lunch [5.6 +/- 0.7 (SE) MJ] was lower than the energy expended [14.5 +/- 0.5 (SE) MJ; P < 0.001] during the 12-km hill walk. Despite the difference in energy intake and expenditure, blood glucose concentration was maintained. The major source of energy was an enhanced fat oxidation, probably from adipose tissue lipolysis reflected in high plasma nonesterified fatty acid concentrations. The major observations were the varying thermoregulatory responses and the negative energy balance incurred during the hill walk. It is concluded that recreational hill walking can constitute a significant metabolic and thermoregulatory strain on participants.
Collapse
Affiliation(s)
- P N Ainslie
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 2ET, United Kingdom.
| | | | | | | | | | | |
Collapse
|