Wei Y, Zheng J, So RHY. Allocating less attention to central vision during vection is correlated with less motion sickness.
ERGONOMICS 2018;
61:933-946. [PMID:
29325490 DOI:
10.1080/00140139.2018.1427805]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
Visually induced motion sickness (VIMS) is a common discomfort response associated with vection-provoking stimuli. It has been suggested that susceptibility to VIMS depends on the ability to regulate visual performance during vection. To test this, 29 participants, with VIMS susceptibility assessed by Motion Sickness Susceptibility Questionnaire, were recruited to undergo three series of sustained attention to response tests (SARTs) while watching dot pattern stimuli known to provoke roll-vection. In general, SARTs performance was impaired in the central visual field (CVF), but improved in peripheral visual field (PVF), suggesting the reallocation of attention during vection. Moreover, VIMS susceptibility was negatively correlated with the effect sizes, suggesting that participants who were less susceptible to VIMS showed better performance in attention re-allocation. Finally, when trained to re-allocation attention from the CVF to the PVF, participants experienced more stable vection. Findings provide a better understanding of VIMS and shed light on possible preventive measures. Practitioner Summary: Allocating less visual attention to central visual field during visual motion stimulation is associated with stronger vection and higher resistance to motion sickness. Virtual reality application designers may utilise the location of visual tasks to strengthen and stabilise vection, while reducing the potential of visually induced motion sickness.
Collapse