1
|
Li S, Zhang H, Zhang H, Li S, Xing F, Chen T, Duan L. Impact analysis of operating conditions on carbon dioxide reduction in microbial electrosynthesis: Insight into the substance utilization and microbial response. BIORESOURCE TECHNOLOGY 2023; 390:129879. [PMID: 37866769 DOI: 10.1016/j.biortech.2023.129879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Microbial electrosynthesis (MES) is facing a series of problems including low energy utilization and production efficiency of high value-added products, which seriously hinder its practical application. In this study, a more practical direct current power source was used and the anaerobic activated sludge from wastewater treatment plants was inoculated to construct the acetic acid-producing MES. The operating conditions of acetic acid production were further optimized and the specific mechanisms involving the substance utilization and microbial response were revealed. The optimum conditions were the potential of 3.0 V and pH 6.0. Under these conditions, highly electroactive biofilms formed and all kinds of substances were effectively utilized. In addition, dominant bacteria (Acetobacterium, Desulfovibrio, Sulfuricurvum, Sulfurospirillum, and Fusibacter) had high abundances. Under optimal conditions, acetic acid-forming characteristic genera (Acetobacterium) had the highest relative abundance (Biocathode-25.82 % and Suspension-17.24 %). This study provided references for the optimal operating conditions of MES and revealed the corresponding mechanisms.
Collapse
Affiliation(s)
- Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Haiya Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Hongwei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Siqi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Fei Xing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tianyi Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
2
|
Modification of Graphite Sheet Anode with Iron (II, III) Oxide-Carbon Dots for Enhancing the Performance of Microbial Fuel Cell. Catalysts 2022. [DOI: 10.3390/catal12091040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The present study explores the use of carbon dots coated with Iron (II, III) oxide (Fe3O4) for its application as an anode in microbial fuel cells (MFC). Fe3O4@PSA-C was synthesized using a hydrothermal-assisted probe sonication method. Nanoparticles were characterized with XRD, SEM, FTIR, and RAMAN Spectroscopy. Different concentrations of Fe3O4- carbon dots (0.25, 0.5, 0.75, and 1 mg/cm2) were coated onto the graphite sheets (Fe3O4@PSA-C), and their performance in MFC was evaluated. Cyclic voltammetry (CV) of Fe3O4@PSA-C (1 mg/cm2) modified anode indicated oxidation peaks at −0.26 mV and +0.16 mV, respectively, with peak currents of 7.7 mA and 8.1 mA. The fluxes of these anodes were much higher than those of other low-concentration Fe3O4@PSA-C modified anodes and the bare graphite sheet anode. The maximum power density (Pmax) was observed in MFC with a 1 mg/cm2 concentration of Fe3O4@PSA-C was 440.01 mW/m2, 1.54 times higher than MFCs using bare graphite sheet anode (285.01 mW/m2). The elevated interaction area of carbon dots permits pervasive Fe3O4 crystallization providing enhanced cell attachment capability of the anode, boosting the biocompatibility of Fe3O4@PSA-C. This significantly improved the performance of the MFC, making Fe3O4@PSA-C modified graphite sheets a good choice as an anode for its application in MFC.
Collapse
|