Athanas A, McCorrison J, Campistron J, Bender N, Price J, Smalley S, Schork NJ. Characterizing Emotional State Transitions During Prolonged Use of a Mindfulness and Meditation App: Observational Study.
JMIR Ment Health 2021;
8:e19832. [PMID:
33650986 PMCID:
PMC7967231 DOI:
10.2196/19832]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/22/2020] [Accepted: 11/15/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND
The increasing demand for mental health care, a lack of mental health care providers, and unequal access to mental health care services have created a need for innovative approaches to mental health care. Digital device apps, including digital therapeutics, that provide recommendations and feedback for dealing with stress, depression, and other mental health issues can be used to adjust mood and ultimately show promise to help meet this demand. In addition, the recommendations delivered through such apps can also be tailored to an individual's needs (ie, personalized) and thereby potentially provide greater benefits than traditional "one-size-fits-all" recommendations.
OBJECTIVE
This study aims to characterize individual transitions from one emotional state to another during the prolonged use of a digital app designed to provide a user with guided meditations based on their initial, potentially negative, emotional state. Understanding the factors that mediate such transitions can lead to improved recommendations for specific mindfulness and meditation interventions or activities (MMAs) provided in mental health apps.
METHODS
We analyzed data collected during the use of the Stop, Breathe & Think (SBT) mindfulness app. The SBT app prompts users to input their emotional state before and immediately after engaging with MMAs recommended by the app. Data were collected from more than 650,000 SBT users engaging in nearly 5 million MMAs. We limited the scope of our analysis to users with 10 or more MMA sessions that included at least 6 basal emotional state evaluations. Using clustering techniques, we grouped emotions recorded by individual users and then applied longitudinal mixed effect models to assess the associations between individual recommended MMAs and transitions from one group of emotions to another.
RESULTS
We found that basal emotional states have a strong influence on transitions from one emotional state to another after MMA engagement. We also found that different MMAs impact these transitions, and many were effective in eliciting a healthy transition but only under certain conditions. In addition, we observed gender and age effects on these transitions.
CONCLUSIONS
We found that the initial emotional state of an SBT app user determines the type of SBT MMAs that will have a favorable effect on their transition from one emotional state to another. Our results have implications for the design and use of guided mental health recommendations for digital device apps.
Collapse